Jack E. Jirak Deputy General Counsel Mailing Address: NCRH 20 / P.O. Box 1551 Raleigh, NC 27602 > o: 919.546.3257 f: 919.546.2694 jack.jirak@duke-energy.com February 1, 2022 #### VIA ELECTRONIC FILING Ms. A. Shonta Dunston Chief Clerk North Carolina Utilities Commission 4325 Mail Service Center Raleigh, North Carolina 27699-4300 **RE:** First Stakeholder Meeting Summary Report **Docket No. E-100, Sub 179** Dear Ms. Dunston: Duke Energy Carolinas, LLC ("DEC") and Duke Energy Progress, LLC ("DEP" and together with DEC, the "Companies") hereby provide this update to the North Carolina Utilities Commission ("Commission") regarding the Companies' ongoing Carbon Plan stakeholder engagement process as contemplated by Part I, Section 1.(1) of Session Law 2021-165 ("HB 951") and the Commission's November 19, 2021 Order Requiring Filing of Carbon Plan and Establishing Procedural Deadlines ("Carbon Plan Procedural Order"). Among other things, the Carbon Plan Procedural Order directs the Companies to conduct at least three stakeholder meetings to gather and incorporate stakeholder input as the Companies develop their initial Carolinas Carbon Plan to be filed with the Commission on May 16, 2022, and to file a report with the Commission within five business days after On January 25, 2022, the Companies held the first of the each stakeholder meeting. three Carbon Plan stakeholder meetings. This first meeting introduced the process and core objectives informing development of the initial Carolinas Carbon Plan, along with providing stakeholders an initial opportunity to learn about the technical inputs and assumptions that will drive the underlying modeling of the Carbon Plan. Approximately 350 external stakeholders attended the session. As directed by the Carbon Plan Procedural Order, the Companies hereby submit their First Stakeholder Meeting Summary Report ("Summary Report"), which provides an overview of the first Carbon Plan stakeholder meeting and a summary of topics discussed. As previously explained, the Companies have retained Great Plains Institute ("GPI") to serve as the facilitator of the stakeholder process, and GPI prepared the Summary Report for the Companies (included as <u>Attachment 1</u>). In addition to the Summary Report, the Companies are submitting the materials presented to stakeholders (included as Attachment <u>2</u>). The materials in <u>Attachment 1</u> and <u>Attachment 2</u> are also posted on the Companies' dedicated website (<u>www.duke-energy.com/CarolinasCarbonPlan</u>). As described more fully in GPI's Summary Report, the first stakeholder meeting received substantial participation, and the Companies sincerely appreciate the engaged participation and diverse feedback that was provided during the first stakeholder meeting. To ensure that the stakeholder process reflects the viewpoints of a comprehensive and diverse group of stakeholders, the Companies have undertaken significant efforts to extend invitations to and publicize this first stakeholder meeting, including reaching out to more than 500 known stakeholders. The success of these efforts is reflected in the wide array of participants, ranging from advocacy groups to private business to municipal governments to members of the public across North Carolina and South Carolina. As directed by the Carbon Plan Procedural Order, a list of participating stakeholders is presented on pages 31-38 of the Summary Report. The Companies look forward to further engagement with interested stakeholders across the Carolinas as these critical issues related to the Companies' system-wide energy transition are considered. The next stakeholder meeting is scheduled for February 23, 2022, which was communicated to meeting attendees at the January 25 meeting. Interested stakeholders may contact GPI at DukeCarbonPlan@gpisd.net to receive future communications about the ongoing stakeholder process. If you have any questions, please do not hesitate to contact me. Thank you for your attention to this matter. Sincerely, Jack E. Jirak Enclosures cc: Parties of Record #### **CERTIFICATE OF SERVICE** I certify that a copy of Duke Energy Carolinas, LLC and Duke Energy Progress, LLC's First Stakeholder Meeting Summary Report, in Docket No. E-100, Sub 179, has been served by electronic mail, hand delivery or by depositing a copy in the United States mail, postage prepaid, to parties of record. This the 1st day of February, 2022. Jack E. Jirak Deputy General Counsel Duke Energy Corporation P.O. Box 1551/NCRH 20 Raleigh, North Carolina 27602 (919) 546-3257 Jack.jirak@duke-energy.com ## Duke Energy's Carolinas Carbon Plan Stakeholder Meeting Summary Report Meeting 1 – Level-Setting and Stakeholder Feedback on Modeling Inputs January 25, 2022 | 9:00 am to 4:00 pm ET ### **Contents** | Meeting Summary | 2 | |---|----| | Process Employed | 2 | | Identifying Points of Consensus | 5 | | Accessing Meeting Materials | 5 | | Meeting Notes | 6 | | I. Process Overview | 6 | | II. Duke Welcome | 7 | | III. Introduction to Resource Planning and Decarbonization in the Carolinas | 9 | | IV. Road to 70 Percent Emissions Reduction and Net-Zero Future | 11 | | V. Clarifying Questions | 13 | | VI. Discussion: Criteria for a Successful Carbon Plan | 15 | | VII. Introduction to Modeling | 17 | | VIII. Coal Retirements Modeling Methodology | 19 | | IX. Load Forecast Drivers | 22 | | X. Key Modeling Cost and Forecast Assumptions | 26 | | XI. Next Steps | 29 | | List of Attendees by Organization | 31 | ## **Meeting Summary** On Tuesday, January 25, 2022, the Great Plains Institute (GPI)¹ convened the first of three stakeholder meetings to inform the development of Duke Energy's Carolinas Carbon Plan. The meeting was held virtually from 9:00am to 4:00pm Eastern. There were approximately 450 individuals who attended the meeting. The full list of attendees is attached to this summary document. All interested parties were welcome to attend this meeting. To solicit participation, GPI initially sent invitiations to a list of over 500 stakeholders provided by Duke Energy. Recipients were encouraged to pass on the invitation to other stakeholders who they felt may be interested in the process. ## **Process Employed** #### **PROCESS OBJECTIVES** Overall, this series of three meetings is being designed to meet the following objectives: - 1. Ensure the Carolinas Carbon Plan is informed by input from a wide range of stakeholders. - 2. Enable a transparent conversation about how to plan an energy transition that prioritizes affordability and reliability for North Carolina and South Carolina customers. - 3. Build on areas of agreement, clarify areas of disagreement, and seek opportunities for collaboration in advance of filing the Carolinas Carbon Plan. #### **MEETING 1 OBJECTVIES AND CONTENT COVERED** Given widespread interest in the Carbon Plan and high expected attendance numbers, this first meeting was designed to establish a baseline of shared knowledge upon which future stakeholder discussions can take place. Specifically, this meeting was designed to accomplish the following objectives: - Build a shared understanding of Duke Energy's approach to developing the Carbon Plan. - Identify an initial list of stakeholders' criteria for a successful Carbon Plan, to inform the plan's development. - Solicit feedback on key modeling inputs and assumptions that need to be finalized immediately to meet the May 16th deadline for the Carbon Plan. Agenda-wise, this meeting was split into two parts. Part 1 took place in the morning and covered Duke's overall approach to developing the Carbon Plan. It also provided an opportunity for stakeholders to ask clarifying questions and to suggest their criteria for a successful Carbon ¹ GPI has been hired by Duke Energy to serve as a third-party convener and facilitator for the stakeholder engagement process to inform development of the Carbon Plan. Plan. Part 2 focused on soliciting feedback on key modeling inputs and assumptions that needed to be finalized immediately, in order for the Duke Energy modeling team to begin their work in advance of the May 16th deadline. This portion of the agenda included presentations on modeling assumptions followed by Q&A sessions on each topic. Each major topic from the meeting agenda is listed below with a description of the content covered. Full details for each section are in the meeting notes section of this report. #### Part 1: Overview and Key Considerations - 1. Welcome and Introductions - a. Welcome from Duke State Presidents of North Carolina and South Carolina. - b. Stakeholders were asked to introduce themselves in the meeting chat. - 2. Stakeholder Engagement Process and Objectives - a. Approach and agenda for this meeting. - b. About the Great Plains Institute. - c. Objectives and timeline for the overall stakeholder engagement process. - d. Ground rules to support productive dialogue in these meetings. - e. Process for accessing meeting materials and providing feedback. - 3. Introduction to Resource Planning and Decarbonization in the Carolinas - a. The three key perspectives of sustainability, affordability, and reliability - b. Planning for reliability with variable and intermittent generation resources - c. Overall modeling approach, including looking first at demand, followed by considering what mix of carbon free resources can be deployed over time to meet that demand. - d. Differences between the execution-focused mid-term plan and the long term plan to reach the 2050 goal. - 4. Road to 70% Emissions Reduction and Net-Zero Future - a. Sources and approach to measuring carbon emissions, both for the baseline and reductions from that baseline. - b. Resources being considered to provide carbon-free generation while maintaining reliability, including demand-side resources, solar, wind, advanced nuclear, hydrogen, and
energy storage. - 5. Discussion - Clarifying questions from stakeholders to Duke staff to help build understanding of the content presented so far. - b. Opportunity for stakeholders to share their criteria for a successful Carbon Plan. #### Part 2: Modeling Inputs and Assumptions - 6. Introduction to Modeling - a. How Duke uses capacity expansion and production cost modeling to identify both the resources that would be needed to transition the system and the impacts of those resources on costs. - b. Key modeling inputs and process steps. - c. Q&A. - 7. Economic Coal Retirements Modeling Methodology - a. Duke's existing coal fleet. - b. How Duke conducts coal retirement analysis, and what stakeholder feedback has already been received on that analysis. - c. Proposed approach to coal retirement analysis for the Carbon Plan. - d. Q&A. - 8. Load Forecast: Key Drivers - a. Energy efficiency forecasting scenarios and opportunities and strategies to increase deployment of energy efficiency. - b. Net energy metering (solar) modeling approach, including adoption rate and cost inputs. - c. Electric vehicle modeling approach and adoption scenarios. - d. Q&A. - 9. Other key modeling assumptions: - a. Solar interconnection forecast and sensitivities. - b. Technology forecasts for near-term emerging technologies that Duke believes will be available within the planning horizon. - c. Natural gas price methodology forecast - d. Q&A. - 10. Next steps - a. How to access meeting materials and provide ongoing feedback. - b. Next meeting on February 23rd. #### **GROUND RULES** To support a constructive meeting environment, GPI established and asked all attendees and panelists to agree to the following ground rules for this and future meetings: - **Respect each other**: Help us to collectively uphold respect for each other's experiences and opinions, even in difficult conversations. We need everyone's wisdom to achieve better understanding and develop robust solutions. - **Focus on values and outcomes**: Today's discussion is about what stakeholders value in the energy future, and how the Carolinas Carbon Plan can align with those values. Pending legal issues are outside the scope of this conversation. - Chatham House Rule: Empower others to voice their perspective by respecting the "Chatham House Rule;" you are welcome to share information discussed, but not a participant's identity or affiliation (including unapproved recording of this session). - **Respect the time**: Our time together is limited and valuable, and we have a large group, so please be mindful of the time and of others' opportunity to participate. - **Use the chat:** Please submit your comments and questions in the chat. GPI staff will monitor the chat to pull out questions for Q&A portions. Please be respectful and focus on issues, not people. - Raise your hand: During dedicated Q&A portions of the meeting, use the "Raise Hand" feature to indicate you would like to voice a question or comment. #### MEETING LOGISTICS AND PARTICIPANT INTERACTION The meeting was held via Zoom Webinar. Stakeholders were allowed to freely chat one another and speakers and facilitators. They were also allowed to raise their hand to be unmuted and ask questions or provide their thoughts orally during Q&A and discussion portions of the meeting. Staff from GPI facilitated the meeting and took meeting notes, which are included in this summary. During the 11:00am discussion portion of the meeting, GPI staff took notes live onscreen to ensure accuracy in capturing stakeholder comments. In keeping with the ground rules detailed above, the meeting notes have been anonymized. GPI has also made available an anonymized printout of the meeting chat on the Carbon Plan webpage.² The meeting was recorded for the purpose of sharing the presentations, however in keeping with the ground rules, the Q&A and discussion portions of the recording will not be shared. ## **Identifying Points of Consensus** Given the large audience of stakeholders who had registered for this meeting, it was not designed to drive towards consensus. Instead, facilitators sought to provide the opportunity for stakeholders to express their thoughts through the chat and orally during the Q&A and discussion portions of the meetings. All comments and questions have been recorded so that Duke Energy can consider them in developing the Carbon Plan. In addition, the comments and questions recorded during this meeting will be used in the following ways to support this process: - GPI will develop a summarized list of stakeholder criteria for a successful Carbon Plan, which will be sent back out to stakeholders for review and refinement. - Comments from the chat and discussion portions of meeting will be organized into a list of themes for stakeholders to review and refine. - The themes identified from this meeting will inform the design of future meetings agendas, including consideration of forming smaller topical subgroups that work towards consensus on key issues. ## **Accessing Meeting Materials** All meeting materials, including the agenda, slide decks, recordings of the presentations, an anonymized printout of the meeting chat, and notes will be posted on the Carbon Plan website at www.duke-energy.com/CarolinasCarbonPlan. In addition, stakeholders are encouraged to send additional feedback and comments to inform the development of the Carbon Plan to DukeCarbonPlan@gpisd.net. ² <u>www.duke-energy.com/CarolinasCarbonPlan</u> ## **Meeting Notes** #### I. Process Overview Doug Scott, Great Plains Institute #### 1. Today's approach - a. Today will be more presentation heavy than future meetings as one of the goals is level-setting. Attendees will have the opportunity to weigh in by chat and verbally during Q&A and discussion portions of the agenda. - b. The goal is to hear form a wide range of stakeholders, regardless of their level of expertise and knowledge on the issues. Today's meeting is intended to help folks get up to speed on the issues. - c. The first half of today will be an overview and level setting on key considerations - d. The goal of today's meeting is to provide a lot of information to attendees, and to hear from attendees about their questions, thoughts, and concerns to inform the development of the Carbon Plan and the design of future meeting agendas. - e. Attendees should feel free to extend the invites to this process to others who should be engaged. #### 2. About Great Plains Institute (GPI) - a. Our job in this project to facilitate stakeholder engagement and produce reports that summarize what was discussed at these meetings. - b. GPI is a 25-year old nonprofit organization based in Minneapolis. Our main goal is decarbonization, and our approach is bringing people together to talk through difficult issues. We seek to help people find consensus if possible, or at least to better understand areas of disagreement where consensus is not possible. - c. GPI has worked in a variety of states across the country, with many different entities, and on many different energy and climate topics. Currently we're working with a handful of states on statewide decarbonization plans. #### 3. Process Objectives: - a. Ensure the Carolinas Carbon Plan is informed by input from a wide range of stakeholders. - b. Enable a transparent conversation about how to plan an energy transition that prioritizes affordability and reliability for NC and SC customers. - c. Build on areas of agreement, clarify areas of disagreement, and seek opportunities for collaboration in advance of filing the Carolinas Carbon Plan. #### 4. Timeline: a. Stakeholder engagement will happen across three meetings from now through late March. The plan must be submitted by May 16th, and then there will be supplemental engagement before the plan has to be finalized before the end of the year. - b. This builds on a lot of work that has already happened on these issues, so while this is a fairly short timeline, it will build on the work that has already occurred. There will also be additional opportunities to engage at the Commission. - c. Scheduled Meeting Dates: - i. Tuesday, January 25th - ii. Wednesday, February 23rd - iii. Tuesday, March 22nd - iv. NOTE: Future meeting agendas will be based on feedback received today #### 5. Ground rules: - a. Respect each other: Help us to collectively uphold respect for each other's experiences and opinions, even in difficult conversations. We need everyone's wisdom to achieve better understanding and develop robust solutions. - b. Focus on values and outcomes: Today's discussion is about what stakeholders value in the energy future, and how the Carolinas Carbon Plan can align with those values. Pending legal issues are outside the scope of this conversation. - c. Chatham House Rule: Empower others to voice their perspective by respecting the "Chatham House Rule;" you are welcome to share information discussed, but not a participant's identity or affiliation (including unapproved recording of this session). - d. Respect the time: Our time together is limited and valuable, and we have a large group, so please be mindful of the time and of others' opportunity to participate. - e. Use the chat: Please submit your comments and questions in the chat. GPI staff will monitor the chat to pull out questions for Q&A portions. Please be respectful and focus on issues, not people. - f. Raise your hand: During dedicated Q&A portions of the meeting, use the "Raise Hand" feature to indicate you would like to voice a question or comment. - 6. Meeting Materials and Feedback - a. Meeting recordings (Q&A portions of meetings will be removed to adhere to the non-attribution rule) and meeting summaries will be uploaded to the website for participants to access: www.duke-energy.com/CarolinasCarbonPlan - b. Information/feedback can be sent to: DukeCarbonPlan@gpisd.net #### II. Duke Welcome Stephen De May, State President, North Carolina and Mike Callahan, State President, South Carolina - 1. Welcome from Stephen De May, State President, North Carolina - a. The purpose of these meetings is to hear from our customers, our communities, and others impacted by a clean energy transition so that the proposed Carbon Plan is informed by stakeholder input. - b. The Carbon Plan proposal will be for both Carolinas. Our utilities span both states, and customers in both states have long benefitted by sharing the costs of an integrated system. Therefore stakeholders from both states will have a voice in this process. - c. Our goal is to develop a proposed Carbon Plan, one that reflects a least cost pathway to decarbonization targets, and does not compromise system reliability. - d. Only our regulatory commissions have the authority to approve a final plan for each state, but as the regulated utility charged with implementing the plan, we have a perspective to share in the plan's development and fully recognize this stakeholder group has perspectives to share as well. - e. To make this experience as productive as possible, it's important to set the stage. Duke will be doing a lot of the talking today, but the process will become more interactive as it progresses. - f. Today is about the technical approach to developing the plan, rather than legal or procedural aspects. But I did want to address the company's proposal for joint proceedings between the North Carolina and South Carolina regulatory commissions. We met some resistance to that proposal, so to prevent procedural concerns from detracting from the important work of developing the Carbon Plan itself, we filed yesterday for withdrawal from those dockets in both states. - g. Our job in these sessions is to develop a Carbon Plan that benefits both states, with input from stakeholders in both states. We are ready to take bold, visionary steps, and to consider new approaches. We are equally committed to providing the reliable service and affordable power that the Carolinas depend on. #### 2. Welcome from Mike Callahan, State President, South Carolina - a. This process is going to reshape the energy landscape for the Carolinas. Duke Energy operates our utilities across states lines and has done so for generations. This has benefitted customers in both states by providing affordable and reliable electricity, based on a strategy of building power plants where they make sense and having customers in both states share the costs. - b. To illustrate this, the W.S. Lee combined cycle plant in South Carolina is paid for at retail 76 percent by North Carolina customers. The same is true for other assets we operate in South Carolina. On the other side of the state, Robinson Nuclear Plant in Hartsville is paid for 90% by North Carolina customers. The inverse is true in North Carolina, where South Carolina pays about a quarter of the cost for DEC assets and about 10 percent of the costs for DEP assets. This reinforces how intertwined our operations are in both states. - c. We are past the point where clean energy is a choice. The utility sector is moving in this direction, and if we can't move the Carolinas together, we could lose momentum, which would not be good for our economies or our customers, who tell us they want us to reduce carbon emissions. - d. The transition is already underway. Duke has been closing coal plants for a number of years. Electricity doesn't stop at the state line, so there is no easy or cost-effective way to reduce emissions or to plan for generation needs in both states on a standalone basis. We believe this shared system has served both states well through economies of scale. # III. Introduction to Resource Planning and Decarbonization in the Carolinas Glen Snider, Duke Energy - 1. In trying to do this, we're balancing three key perspectives of sustainability, affordability, and reliability - a. Sustainability: we've been decarbonizing our portfolio (moving away from fossil to renewable resources) for a number of years. In addition to carbon reduction, we're striving to continually improve our footprint across land, air, and water as well. - b. Affordability: Every resource we add to the system has a different cost profile that goes into the planning process and that we need to consider. These costs can be viewed from different perspectives (e.g., cumulative costs over time represented as present value of costs or annual bill impacts). Plan to look at costs from multiple perspectives. - c. Reliability: A core asset of power delivery. Need to serve customer demand that varies yearly, monthly, hourly, and by the minute. Also need to have resources to meet demand over extended periods where customer demand is very high. And need to consider backup resources to provide power when other resources are unavailable due to things maintenance, weather, etc. Finally, need to maintain flexibility to meet real-time changes in customer demand. - 2. Reliability requires responding to variability - a. We're looking at every hour of every day between now and 2050, from all three perspectives (sustainability, affordability, reliability). - b. Gross demand: the total demand for energy throughout the day. - c. Net demand (load net of renewables): the resulting demand once you account for generation from renewables to reduce the need for non-renewable resources. - d. The real-time variability of both demand and renewables creates the need to have a flexible system that can respond to that variability, with resources that can follow customer demand during times when wind and solar are not producing at full capacity. - e. One of the challenges of developing a resource plan or carbon reduction plan is keeping those three perspectives in mind, while also looking across multiple points in time where demand and resources may look different. - 3. Elements of decarbonization: how do you look at all of these variables over time? - a. We start by first looking at the grid edge or customer side of the equation (e.g., efficiency programs, demand side management programs, rate design to encourage usage at times of day when energy is cheaper or renewables are producing). Addressing the customer side first helps to minimize the need for generation resources and other system infrastructure. In other words, reduce the size of the challenge. - b. Once you've maximized potential on the grid edge, what carbon free resources can be added (e.g., solar, wind, modular nuclear)? Looking to add carbon-free resources as carbon intensive resources are being retired. - c. Also need to look at dispatchable resources in terms of energy storage technologies to shift loads and ensure reliability. - d. Displacing coal with very efficient, hydrogen-capable natural gas can also be part of the solution on the trajectory to 70 percent and net zero, since natural gas provides an initial reduction and hydrogen would allow reaching net zero. - e. There's a wide array of technologies with different physical, financial, and other characteristics. What we're trying to accomplish is the right mix of these resources that can meet our goals. - f. This is all a simplification, but we need to have a structured way of tackling a complex problem. - 4. Executing a plan within a plan: We're going to present a plan for the Commission's consideration that looks all the way to 2050. That creates a good long-term view, but it also develops the need for a plan within a plan: - a. Roughly three levels of planning needed: - i. Traditional resource planning: what's going to happen within the next decade, and how to meet the interim 70% goal? This will focus on a mix of technologies that are available today and known and executable, as well as enablers that are needed to support execution. - ii. Mid-term planning: This will phase from the initial decade into the longerterm plan, which will look at emergent technologies (e.g., advanced nuclear, off-shore wind). - iii. 2050 planning: Much more uncertainty around what customer load will look like and the resources available to serve that load. Will be working around signposts that signal the pace of advancement, looking at technology pilots, considering policies that will be needed to assist with the transition. There are elements of this timeframe that are unknowable today (e.g., what technologies will be available by this point in time? How much of a role will they play?). - 5. Periodic updates will incorporate new information - a. Past policy and current policy calls for these plans to be updated periodically so that they can be adjusted. Our understanding of uncertainties will improve over time, though at the same time, our ability to pivot and shift will diminish as we get closer to the end goal. #### 6. Conclusion: - a. The 3 perspectives of sustainability, affordability, and reliability need to be looked at holistically. - b. No single resource can solve this need to look at a mix of resources and how they fit into the broader portfolio. - c. Clarification net zero refers to the fact that the last few quantities (e.g., final 5 percent) of carbon may be achieved through an emergent offset market. These markets could rely on things like forestation and excess reductions from other locations. This ultimately depends on the advancement and availability of zero carbon technologies. #### IV. Road to 70 Percent Emissions Reduction and Net-Zero Future Mark McIntire and Mike Quinto, Duke Energy #### 1. Background - a. Unlike the 70 percent greenhouse gas emissions reduction goal that was in the North Carolina Clean Energy Plan, this is focused solely on carbon dioxide emissions. - b. This is a two-state plan to serve both North and South Carolina,
but a lot of the focus in this presentation is on North Carolina given the need for compliance with NC House Bill 951 and the NCUC's requirements for the Carbon Plan. #### 2. CO₂ Emissions Data Considerations a. Want to ensure the data is publicly available, credible, reliable, and repeatable year-over-year. #### 3. EPA eGrid - a. One of the preeminent sources for this is the Environmental Protection Agency (EPA) Emissions and Generation Resource Integrated Database (eGRID). - b. Reliable and trustworthy source with plant-specific data for all U.S. generating plants. Used for regulatory purposes by utilities and government agencies. - c. Emissions data sources: - Uses EPA's Clean Air Market Division (CAMD) Power Sector Emissions Data – reported to EPA by electric generation units to comply with regulations. - ii. Emissions data primarily uses actual measurements of CO₂ in stack emissions. - iii. Where actual measurements are not available, estimated emissions can be used. - d. CO₂ emissions included in baseline and future actual emissions - i. Owned: Stack emissions associated with the ownership share of electric generation facilities located in NC and owned by DEC/DEP. - ii. Operated by: stack emissions associated with electric generating facilities location in North Carolina and operated by DEC/DEP - iii. Operated on behalf of: Located in NC, but not owned or operated by DEC/DEP, but contracted to sell electrical output to DEC/DEP (wholesale power producers, small producers, and cogeneration systems). - 1. When looking at cogeneration, only the emissions associated with electricity generation are counted. - iv. NOTE: Emissions from the use of fuels like biomass, which are not producing net emissions (as the fuels are part of the natural carbon cycle) are not counted. - e. Carolinas Combined Fleet Transition Progress - i. Coming from a 2005 fleet that was primarily coal and nuclear. - ii. Progress to date, represented by the 2021 projections from the 2020 IRO, shows reduced coal usage, added lower carbon fossil resources (e.g., natural gas), and increased carbon-free generation. - iii. The 2020 IRPs projection for 2035 (from the Base Case with Carbon Policy, so the Carbon Plan will be more aggressive) foresees coal nearly phasing out and carbon-free generation increasing. - f. Baseline, progress, and 70 percent reduction target - i. 2005: 76 Million tons CO2 emissions - ii. 2019: 47 Million - iii. 70 percent reduction target: would need to reach less than 23 Million tons emitted. - g. Decarbonization replacement resources (what's needed to achieve the 70 percent reduction): - Demand-side resources will be important (e.g., energy efficiency, demand response, rooftop solar). These will help to reduce the need for new generation. - Solar will be a key tool and is already being deployed today at scale. We expect this to continue and to be a large part of the decarbonization pathway, - iii. Emerging technologies (or technologies not yet widely deployed in our region) onshore and offshore wind. See a gap in deployment around 2040's where new wind resource areas would not be accessible. - Explanation of offshore wind gap: To do offshore wind, need access to lease areas where the turbines can be built, and these areas are limited. In the early to mid-30's we would use up the lease areas available today. After that, new lease areas will to be opened up, and we expect that process will take some time, so that's the gap. - iv. Advanced nuclear: can be used for system flexibility and responding to intermittencies and variable energy resources. Potential for bulk energy and can be integrated with storage and used to make hydrogen. - v. Hydrogen-capable combined cycle turbines an important option for the future. - vi. Energy storage: Multiple forms. Need to remember that these are load on the system. The goal is to use these to charge when demand is lower and discharge when demand is higher and generation is more expensive and potentially more carbon-intense. - Pumped hydro: Available and used currently. Have over 2,000 MW of this on the system today, but potential with the geography in the Carolinas for additional resource capacity. - 2. Batteries: Continuing to decrease in price and looking at how the market is evolving. - 3. Hydrogen storage: Deployment starting to increase and there's excitement about the capabilities for it to support variable energy resources. Will continue to look at how it can be produced and used at large scales. It will need to be produced from carbon-free resources to be considered green and further reduce carbon emissions. - h. The NC/SC system must be built preserving reliability - i. Graphs on this slide are intended to help stakeholders understand how the system might operate in extreme winter conditions. These graphs are generated from the Companies' Portfolio Screening Tool on its website. In specifying different energy mixes within the tool the user can show how generation can be used to meet load in high load winter and summer periods and low load shoulder periods - ii. Top left graph is a reflection of how the system has been operated in the past, with baseline nuclear and coal and gas providing dispatchability to support the system, with very little energy from variabile energy resources such as solar. - iii. Acknowledge that going forward, the system will need to operate differently while maintaining reliability. Bottom left graph shows that we'll eventually need to move away from coal and will rely more on variable energy resources and storage to reduce carbon. Red portion is unserved load, so need to avoid that happening. - iv. On the right, this shows load net of solar production from DEP a couple days ago. As we look at load net of renewables, the rest of the system needs to be able to meet this load and respond to the variability of the system. - v. On a cold winter morning, see a peak around 7am in the morning, around 11,50 MW of load. As the sun comes out, load goes down towards a low point of about 6,500 MW around 2pm. Then, as the sun goes down and folks come home from work, load goes back up to about 11,000 MW around 8pm. Need to provide reliability for all times of the day, on an hour-by-hour, minute-by-minute basis. ## V. Clarifying Questions Glen Snider, Mark McIntire, and Mike Quinto, Duke Energy. Facilitated by Doug Scott, Great Plains Institute. 1. Are emissions associated with electricity exported from Duke's system also included? What about electricity imports where there is no long-term contract established? - a. The baseline emissions are embedded in HB 951 goal and baseline are associated with in-state emissions of CO2. That doesn't mean Duke isn't concerned with other greenhouse gases, it's just the requirement for compliance with the NCUC's order on the Carbon Plan. Exports will be included, but imports will not (because they're not in-state). - 2. Storage: what kind of storage factors are you considering in the forecast of what would be available? - a. Looking at both chemical storage (e.g., lithium ion batteries) and non-chemical storage (e.g., pumped storage, compressed air). Acknowledge that what's available today will be different from what's available 20 years from now. Interim goal will look at what's available today, long term goal will look to emerging technologies. - 3. How can Duke use customer-sited resources like rooftop solar in its planning? - a. Customer-sited resources are the first thing we think of to pursue aggressively to shape load and reduce the size of the total problem we're trying to solve for. We'll be looking more at this later today. - 4. Could you give examples of generating facilities that are not owned, but operated by Duke? - a. Generating facilities that would be partially owned units with some wholesale customers (operate but don't own 100 percent of resource), but operated by DEC/DEP. - 5. What percentage of Duke's generation is supplied by imports? - a. Varies year to year. Sometimes have been a net exporter depending on the needs of surrounding regions, but by and large we have very small net imports and exports compared to our total load obligation (greater than 90 percent of needs met through Duke-owned resources). - 6. Electrification beyond vehicles, such as buildings? - a. It's built into the load forecast. There are different views about the pace of adoption, so we build a view into the load forecast and can dig deeper into it later this afternoon. That, plus customer growth, will put upward pressure on electricity demand. Folks are migrating into our region, on a net basis. Need to achieve our goals despite customer growth and electrification. - 7. Can you speak to how you're considering demand flexibility and demand side management? - a. We use energy efficiency to refer to programs that help customers to use less electricity. Use demand response programs to help change when electricity is used (e.g., shift to a more affordable and/or less carbon intensive time period). Those, plus programs like rooftop solar and rate design help us to meet the load shape - 8. How about voltage optimization? - a. Integrated volt/var looks at the voltage at which customers are being served. Possible to lower voltage within a range that maintains quality of service, but allows saving energy during peak times. - 9. What are you doing in terms of methane leakage reduction? - a. At the holding company level, we are trying to reduce methane leakage upstream by working with pipeline distribution companies. All resources have upstream impacts that we have to qualitatively consider. There is no perfect resource without these issues, but we certainly are trying to drive down emissions beyond our borders. This plan will specifically address carbon, but that doesn't mean we're ignoring other GHG emissions. - b. We have a net zero methane emissions goal from our natural gas business by 2030. We've been making investments in technologies to
detect, address, and fix leaks for some time. #### VI. Discussion: Criteria for a Successful Carbon Plan The following are notes taken on-screen (to ensure accuracy) during the meeting to capture stakeholder responses to the question, "What are your criteria for a successful Carbon Plan?" This discussion was facilitated by Doug Scott of the Great Plains Institute, with on-screen notetaking by Trevor Drake of the Great Plains Institute. Additional comments that were submitted in the meeting chat will be incorporated into a summary of criteria for a successful Carbon Plan that will be sent back out to stakeholders for review and refinement. The suggestions are numbered for reference purposes only; the numbers do not indicate a ranking or priority. - Where does the carbon reduction goal fit among the 3 perspectives? Interested in the speed of achieving reductions and use of renewables. Would like the crisis nature reflected. - How might Duke be looking at incorporating the recommendations from related processes into the Carbon Plan? Should include how to offset cost impacts through programs that focus on low income programs, weatherization, etc. Would specifically like to see the recommendations from the Low Income Affordability Collaborative incorporated. - 3. What consideration is Duke giving to combining the balancing areas of the two utilities (and if not considering, why not)? - a. If not to be combined, is there a plan for allowing facilities located in DEP to serve DEC load? Not possible to achieve this if facilities have to be sited proportionate to load in service territories. - b. Would like to see consideration of combining IRP's for DEC and DEP (since they currently file separately, but need to meet the same carbon reduction standard)? - 4. Reflect the critical role that the electric system has in solving the economy-wide emissions problem key issue is how effective you are at electrification of other sectors. - 5. Per NC law, would be possible to site new facilities in SC. Wondering how Duke is thinking about this. Open and available to Duke to state it will not site facilities in SC helpful to clarify the approach on this. - 6. Last IRP efficiency savings were limited to two levels. Would like to see the Carbon Plan center efficiency and DSM as first choice resources. - 7. Would like to see plan accomplish methane reduction goals before selecting new gas as a resource. - 8. Would like to see an aggressive storage scenario projecting storage will be low cost and high duration (because it could send a signal to the market for R&D). - 9. See value in open and transparent modeling tools, which will result in better buy-in among stakeholders. - 10. Transparency around metrics/assumptions: - a. Perceived regulatory risk (resources require approval from multiple regulators), such as for advanced nuclear. - b. R&D investments and emerging technologies - 11. Transparency and involving stakeholder input sharing not just modeling tools, but data inputs to the modeling tools - 12. Avoiding lock-in: Begin everything with the end in mind. Don't preclude resource decisions down the road that might have a better cost outlook. - 13. Consider regional coordination, including with respect to transmission. - 14. Emphasize the hard work done as part of the Clean Energy Plan stakeholder process and ensure this builds on that work. Would like this group to look at the policies that were studied, specifically in the A1 process. - 15. Would like to see on-bill financing as an enabler for energy efficiency/DSM - 16. Want to make sure we're supporting communities near coal facilities, in terms of the economic and community impacts of plant retirements. - 17. When discussing renewables, make sure we distinguish between reliability and variability. These resources are variable, but in a predictable way, which makes them reliable. - 18. Be intentional about the siting of new facilities, avoiding areas already disproportionately impacted by energy generation or other industrial facilities (take a holistic approach). - 19. Make sure to maintain fair and affordable rates for at-risk households and communities. - 20. Risk and resiliency process want to make sure the findings are incorporated with respect to future siting, future transmission needs, and distributed versus centralized resources (and include the cost perspective with these in mind). - 21. This is a climate emergency. Would like to see at least 70 percent by as soon as possible, and 100 percent by 2050 or sooner. - 22. Want to ensure we're measuring real reductions (e.g., swine biogas gets too much credit compared to its contribution to reductions) - 23. Suggest a carbon equivalency plan, rather than just a Carbon Plan. - 24. Would like transparency on pricing what is this going to cost us? Especially important to industrial customers. - 25. Importance of trying to achieve consensus on as many issues as possible prior to filing. Litigation is not the best way to get the best outcomes. - 26. Increase in natural gas generation in base case: - a. Climate crisis is one of cumulative emissions, not specific points in time (if we emit a lot of carbon towards 2050, but still hit the target, we'll make the problem worse) - b. Want to avoid building gas plants that will not survive their useful life, and could cause rate impacts - 27. Value early action to maximize distributed resources and acknowledge the unique benefits of different scales of generation resources. - 28. We can't ignore the 2050 goal keep it in mind as we seek to meet the interim goal. - 29. Having some metrics or ways to identify or ensure we're implementing HB 951 mandates in each of the 3 perspectives is key. - 30. Would like to see an option included with a very high level of distributed resources, and all currently available mechanisms for those resources to shift load out of peak periods. ### VII. Introduction to Modeling Robert (Bobby) McMurry, Duke Energy - 1. Models, inputs, and assumptions - a. Goal is to ensure the expansion plan meets the three objectives described above. - b. Capacity expansion planning models the "what:" what is needed to meet our needs over time, in terms of existing and new generation. - c. Production cost modeling is the "how:" how the system will operate on an hourly, seasonal, and annual basis. - d. Storage is not shown on the slide, but it's very important to the system and will be considered (as described earlier) #### 2. Models - a. Duke recently switched to a new capacity expansion and production cost modeling software called "EnCompass." It's relatively new and offers more features than previous tool, including... - i. Modeling multiple constraints at once - ii. Ancillary services (e.g., regulation and balancing reserves) - iii. Emission caps - iv. Renewables requirements - v. Monthly reserve margins - vi. Advanced storage logic - vii. Dual fuel optimization (e.g., some plants can run coal or gas) - viii. Economic retirement of power plants - b. Reliability tools - i. Regulation and Balancing Reserves (ancillaries) provides reserves needed to account for day ahead changes and inter-hour volatility. - ii. Strategic Energy and Risk Valuation Model (SERVM) -- reliability check to assure portfolios will not exceed 1 loss of load event per 10-year period #### 3. Inputs - a. Load forecast (includes efficiency, electric vehicles, behind-the-meter generation etc.) - b. New generation (capital cost, lifetime, operations and maintenance, efficiency, and constraints for specific types of generation) - c. Existing generation (operations and maintenance, efficiency, and constraints) - d. Fuel cost (costs of coal, goas, oil) - e. Constraints (emissions, reserve margin, ancillaries, transmission) #### 4. High-level planning process: - a. Start with a scenario, with all of the inputs listed above. - b. Capacity expansion looks at what resources are needed to meet the constraints. - i. It's a screening tool it accounts for a typical day load shape and for the peak load. - ii. Important to get the ancillary requirements right given the specific mix of resources - c. Production cost model looks at operations and impacts from an hourly basis what is our fuel cost through time, what are our emissions projections through time, and how will the system operate under this scenario? - d. Conduct a check to ensure that the scenario is reliable for both long and short term events, and also consider the transmission and distribution constraints of new generation (e.g., can it be interconnected?). - e. Overall, each scenario is designed to consider a range of sensitivities that can help with selection of an optimized plan. #### 5. Q&A - a. Could you clarify, which processes are done by encompass versus other methods? - i. Retirement analysis, capacity expansion and production cost modeling is done by EnCompass. Ancillaries and reserves are developed in-house. - b. Is there somewhere where the inputs and assumptions are available to stakeholders, to help folks understand the modeling better? - i. Many of our inputs relating to operating units are proprietary due to the competitive nature of the information. - ii. There are hundreds of inputs and assumptions that go into the modeling. To the extent we can, we're trying to use transparent and publicly available data sources, though in some cases that information is internal. - We'll be making efforts before and after filing to be transparent with that information. - iii. If stakeholders have suggested sources to inform the assumptions and inputs, we want to see that. - c. Does Duke set a CO2 limit, and then let the model select? - i. We do it based on a mass cap and/or an allowance price that will make the model take action in the same way as though there's a mass cap (the allowance would just be used as a modeling constraint, it wouldn't be an actual carbon tax policy) - d. What is mass cap? - i. It's the specific quantity of emissions that the
portfolio can emit. The model must solve for a mix of resources that stays within the cap and meets all the other constraints. - e. What are ancillaries? - i. We have additional reserves to account for day-ahead schedule variance (e.g., load is different than day-ahead planning) and inter-hour volatility. - f. Will the modeling show the rate increase to customers? - i. In addition to looking at the cumulative cost of the plan, we will be looking at the annual impact on an average bill across time. ## VIII. Coal Retirements Modeling Methodology Mike Quinto, Duke Energy - 1. Coal in the Carolinas (as of 2020 IRP) - a. It's important to recognize the role that coal had in our portfolio and how that will change going forward. It's provided reliable energy for decades, with the ability to be available when called upon. Now, need to be thinking about when to replace coal resources with those that are more economic and carry less risk for customers. This is one of the big questions we need to address. - 2. Coal retirement analysis background - a. Previous IRP's used the retirement dates from DEC/DEP's most recently approved depreciation study. However, as of 2020 IRP process, the Companies conducted an economic coal retirement analysis a comparison between your existing capacity costs versus the costs of replacement capacity. - b. When a unit is retired and what it is replaced with can change the analysis. - 3. DEC/DEP Coal Fleet Statistics - a. 15 units that are fueled with coal, but some of them can be fueled with either coal or natural gas, which can impact the analysis. - b. In the 2020 IRP, we conducted an economic retirement analysis those results are listed on slide 44. Many of them are within the IRP planning horizon. - c. Important to use this as one tool to find the least cost pathway toward the carbon reduction goals. - 4. Stakeholder feedback received (previous to this process) for coal retirement analysis: - a. General feedback: - i. The magnitude and complexity of this problem is very large takes a lot of computing and lots of options for how to do it. - Modeling limitations would like to capture every bit of uncertainty, but some aren't practical to capture through modeling (even if they're acknowledged) - iii. Transparency in understanding why a unit was selected for retirement and what it would be replaced with - iv. Desire and need for straightforward process with standard methodology - v. Removing objectivity from the analysis #### b. Key considerations - i. Retirements should be considered simultaneously - ii. Replacement resources should include the option of multiple resources to the fill the gap of a single plant retirement - iii. Retirements should be co-optimized with replacement resource development - iv. Retirements should be determined by the net exchanges in investment, maintenance, and operations cost of the system as a whole - v. Impacts to the transmission system acknowledge it's difficult to identify and capture in the IRP modeling. - vi. Recognizing the investment in these resources changes over time as they approach retirement, and costs for replacement resources change too. - vii. Need for retirement dependency and capturing shifting ccosts - viii. Sunk costs should be excluded, such that only avoidable costs should be considered. #### c. Summary of approach in Carbon Plan - i. Will use endogenous economic selection of coal retirement in Encompass's capacity expansion model. - 1. Will model the determination of order and timing of retirements - 2. Will consider co-optimization of retirements and replacement resources. - 3. Will capture net cost differences in investment, maintenance, and operations cost of the system. - ii. Still evaluating capabilities of model to handle the analysis - iii. Option to evaluate coal retirements in sequential process in production cost model. iv. Retirements are dependent on replacement resources, and may be adjusted slightly to support orderly transition or maintain reliability. #### 5. Q&A - a. Are you planning on changing the 1-in-10 year loss of load standard? - i. No, this is not changing. - b. Does the continuing cost of managing coal ash and other environmental costs fit into the analysis? - i. We are considering incremental coal ash, but not coal ash that is currently a byproduct of the system (because this is a sunk cost). - c. Are there additional upstream costs such as pipeline investment that are factored in? - i. Yes, fuel supply costs are considered. - d. Is the ability to do storage at coal plant retirement sites factored in? - Any replacement resource can leverage the existing transmission infrastructure. Storage is unique because it has to be able to charge and discharge (whereas a coal plant may have been set up only to discharge energy). - e. How is EE and DSM modeled as a replacement resource? - i. The EE cost effectiveness framework looks at energy efficiency relative to other options – is it lower cost than the alternatives you'd have without efficiency? - f. How many sensitivities do you plan on running? How about gas prices? - i. Exact number has not yet been determined. There is a finite limit to the number that can be considered before the process becomes too unwieldly. Have seen in past resource planning processes that gas pricing is an important variable, so likely will be included. - If there are scenarios or sensitivities that stakeholders feel strongly about, Duke would like to hear those. - g. Are you using the economic retirement analysis from the 2020 IRP? - i. We'll be using the knowledge we've gained through that analysis as a foundation, but updating it with new tools, approaches, and inputs. - h. Looking forward, do you envision storage scenarios longer than 4 hours in duration? - i. There's a host of storage on the horizon with longer durations, such as flow batteries. Intend to look at a reasonable fleet of storage options with credible cost and performance assumptions for the model to choose among. Will also consider how much value they have on the system from a capacity basis. #### IX. Load Forecast Drivers Brian Bak, Tim Duff, and Matt Kalemba, Duke Energy - 1. Energy Efficiency - a. Energy efficiency forecasting - i. Market potential study provides a comprehensive assessment of EE/DSM potential using the best data available at the time, with results specific to service territory and customer base. Most recent study was completed in June 2020, but working to provide an update in support of both integrated resource plans and the Carbon Plan, though it likely won't be completed in time to be fully integrated into the Carbon Plan. Includes all currently known technologies, estimated costs, and energy and demand reduction impacts. - b. Forecast base case - i. Traditionally, take internal projections of what can be achieved to develop the first 5 years, then transition to using the market potential study (25-30 year horizon). - ii. Cumulative energy savings grow rapidly in the initial years, plateaus, and then starts to decline. - The base case continues to add energy savings throughout the entire planning period, but the new savings don't keep pace with the legacy savings from previous measures that are reaching the end of their lifetime deemed savings (savings are still there, but they become incorporated into the overall load forecast), which is why it declines in later years. - Incremental additions also don't keep up because the market potential study is based on currently available technologies, so you reach saturation of those in later years. Hoping the updated to the market potential study might address this by looking at new technologies and end uses. - c. Forecast 1% of available retail load - i. Every MWh that we don't have to serve is carbon avoided, so assuming we can save 1 percent in each year of the planning horizon. This assumes we'll come up with new measures and concepts in later years to maintain this, above and beyond what the current potential study has forecasted. - d. Moving beyond the Carolinas' base EE/DSM forecast - Recognizing the important that energy efficiency can play, want to look at how to get beyond the base forecast and even beyond the aggressive forecast. - ii. Consider this across four key avenues: - 1. Technical potential expand the number of potential measures that can be deployed. - 2. Economic potential help measures to meet cost effectiveness tests. - 3. Achievable potential remove barriers that customers have to participating in EE/DSM programs. - 4. Program potential budgeting constraints and enhancements to the existing programs and measures (e.g., bundling) to make as much use as possible of approved programs. - iii. Structural modifications and mechanisms to remove market barriers to program participation (achievable potential): - On-tariff -- financing program with necessary regulatory recovery mechanism that helps remove upfront cost barriers or credit barriers to undertake efficiency programs. - 2. Marketing enhancements better using advanced metering data to target programs to customers who will best benefit from them - iv. Modification to cost effectiveness (economic potential): - Value of carbon can factor into the evaluation of cost effectiveness and make new programs cost effective or allow the expansion of existing programs. - 2. As found energy savings recognition look at savings generated compared to what is actually being replaced, rather than based on the efficiency of the new device alone. - 3. Recognition of localized customer program values identify overloaded circuits and target customers on those circuits to reduce spending on transmission and distribution, and make measures in those locations more cost effective. - v. Modifications to expand potential measures and offers (technical potential): - Utility codes and standards program today we look at efficiency versus the current building codes and standards. If utilities can get credit for helping
to meet standards, it can create additional opportunities, - 2. Customer owned assets that reduce grid consumption how can we make the energy being consumed from the grid as efficient as possible (e.g., rooftop solar can reduce utility grid usage). - 3. Efficiency for electrification loads opportunity for things like electric vehicles. - Modifications to non-residential opt-out provision where nonresidential customers can opt out of efficiency programs. Modification to gain more participants would improve efficiency offerings. - 5. Expand EE programs to wholesale customers (i.e., those who take generation service from the Duke system, as opposed to retail service). #### e. Q&A - i. Were the slides showing kWh or dollars? - 1. kWh - ii. Is there any factoring in of the quantity of carbon that would be saved through efficiency measures? - 1. Yes, still working on that for the Carbon Plan - iii. Are there sensitivities for federal or state carbon regulations? - Not aware of any specific requirement regarding the level of efficiency. To the extent it would create transparent value around how carbon would be factored in, it could expand the potential for efficiency. - iv. Is there a value yet for the cost of carbon? - 1. Not to our knowledge yet it's a question that applies to more than just EE. - v. Is the 1 percent shown of retail load, or does it take into account the industrial opt-out? - 1. It's of available load, so does not include the opt-out. - 2. So does it equate to .65 or .7 percent? - a. We'd have to look at the exact number, but the concept is right and that's probably in the ballpark. - vi. Will you incorporate these winter morning DSM/EE scenarios into your underlying LOLE analysis? - 1. Yes, they will be incorporated in those studies - vii. Is the 1 percent modeling lower than Duke's achieved EE savings performance in recent years? - No, not in recent years. There was a period where we were seeing close to 1 percent, but that was prior to COVID and changes in lighting standards that increased the baseline (making measures less cost effective). - 2. Net Metering and Solar Forecast - a. Current Modeling Approach - Rooftop solar adoptions across the Carolinas in DEC and DEP roughly 50,000 adoptions by the end of 2022. Average annual growth of 9% in DEP and 11% in DEC. - ii. Forecast based on a payback model what's the customer's benefit of installing solar, as opposed to the cost. Use that to determine a payback period and compare that to past adoption behavior to make a forecast. - iii. Solar costs using today's costs with a price decline of 15-20 percent through the end of this decade. Do include the ITC until its scheduled rolloff in 2024. - iv. Two ways to adjust the modeling interested in feedback from stakeholders on what they'd like to see: - 1. Adjust the inputs -- more aggressive price declines, reinstatement of the ITC, or more aggressive adoption rates - 2. Set a target for solar adoption that the model strives to hit. #### b. Q&A - i. Existing or new net metering? - 1. New - ii. Commercial rooftop solar included? - 1. Yes - iii. Why is there such a difference in rooftop solar between DEC and DEP? - 1. Some of it had to do with modeling customers who have all electric service versus dual fuel. - iv. You said you're modeling current tariffs with respect to customer owned solar adoption. - 1. The current tariffs provide the base case of what we know have been approved. Increased adoption can be a reflection of different tariff structures. - 2. There's a proposed update to NEM that is still pending. - 3. As noted above, also looking at providing an energy efficiency incentive for solar adoption that reduces power from the grid. - c. Electric Vehicle Adoption - i. Current Modeling Approach - 1. Base cases for DEC and DEP plug-in electric vehicles (including hybrids) are 11-12% of new vehicle sales by 2030. - 2. High cases are 44-46 percent by 2030, 100 percent of new vehicle sales by 2040. - 3. Includes light, medium, and heavy-duty vehicles - 4. EV's represent about 1.5% of total energy by 2030 in the base case and 3-4% in the high case. - 5. Other options: - a. Update base scenario accounting for increased commitments from EV manufacturers and accelerated EV adoption - b. High case that achieves President Biden's goal of PEVs making up 40-50 percent of new vehicle sales by 2030. - ii. Q&A - 1. How about V2G? a. Something we're trying to figure out how to incorporate, and likely will look closer at it down the road. ## X. Key Modeling Cost and Forecast Assumptions Matt Kalemba, Adam Reichenbach, Robert (Bobby) McMurry, Duke Energy - 1. Solar Interconnection Forecast - a. Background - i. Solar is a least cost resource for carbon free generation, so need to make sure we can get solar onto our system through interconnection. It's unique because it requires more land per MW than almost any other resource. Have already connected 4,000 MW of solar in areas that were once unconstrained, but with the influx of solar, those areas are now transmission constrained. There are less unconstrained areas remaining that are suitable for solar, as a result, interconnecting solar becomes more expensive and takes longer to get on line if it requires transmission system upgrades to interconnect." - ii. Historically, solar interconnections have been variable and most recently affected by COVID. Have averaged 510 MW/year of solar interconnections since 2015; approximately 9 transmission level interconnections annually. - iii. Time from signing interconnection agreement to in service date, in months – lots of variability in the time to interconnect, but also the average time to interconnect is increasing from 15-30 months to 30-50 months. #### b. Sensitivities - Under current trends, we won't see new projects come online until 2026-2030. - ii. Three scenarios being looked at for interconnection from 2026-2030 that allow the model to select up to a certain amount (cumulative numbers include 4,000 MW already connected): - 1. Transmission constrained up to 400/500 MW per year, adding up to 9,400 MW solar connected by 2030. Takes into account things like transmission constraints or limited land availability. - 2. Progressive up to 750MW/year, adding up to 11,000 MW solar connected by 2030. - Enhanced Transmission Policy (that would enable strategic transmission investments and alleviate constrained areas) – still determining what this would look like in terms of MW of solar that could be selected per year #### c. Q&A If you look at Duke's 2020 IRP and the 70 percent decarbonization scenarios, they call for a total of over 16 GW of solar, and that's in conjunction with some very ambitious wind energy numbers. We're talking about needing a lot more solar than 9-11 GW, so how do you envision being able to accomplish that given the annual additions that appeared in the slides? - 1. The 16 GW of solar was through 2035; we are focusing on solar by 2030 in the table. However, the reason we're discussing this as a constraint is to highlight the fact that we need to develop plans to be able to interconnect more solar, so agree with you that interconnecting more solar will be important to meeting the carbon goals, and want to acknowledge the transmission constraints. - ii. Do you all have a plan or concept for what the enhanced transmission policy might look like? - 1. Can't speak to the details, but know there is an internal team looking at this. - iii. Want to reiterate that transmission improvements are mission critical and will have significant impacts on costs. Would request that the company set up a working group to accomplish this. #### 2. Technology Forecast - a. Existing technologies or near-term emerging technologies that Duke believes will be available within the planning horizon (see table with full details in slide deck): - i. Solar PV with tracking - ii. Offshore wind (note the 10-year moratorium coming up) - iii. Onshore wind - iv. Battery storage - v. Pumped hydro (has both pumping and generating capabilities) - vi. Advanced nuclear - vii. Combined cycle (with option to switch to hydrogen for fuel) - viii. Combustion turbine (with option to switch to hydrogen for fuel) - b. Technology learning curves towards 2030 - i. Cost declines of 5-12 percent: Established technologies and very emergent technologies, including onshore wind, small modular nuclear, combined cycle, and combustion turbine. - Cost declines of 34-57 percent: Technologies being deployed and seeing significant cost reductions, including solar PV with tracking, battery storage, offshore wind. #### c. Q&A: - i. Source of capacity factor estimates? - 1. A couple different sources, both external (Burns & McDonnell, Guidehouse, and EPRI) and internal data from existing plants. - ii. How many advanced nuclear facilities exist? - Two designs being deployed in the U.S., but nothing built currently. A small modular reactor is being built in Utah. There are some projects globally. - iii. Why is pumped hydro not considered as peaking as well as intermediate? Is that because of limited generation capacity at the facility? - 1. It is a peaking resource as well. - iv. For hydrogen to replace natural gas, where would the hydrogen come from, and how are you thinking about that? - 1. This is emergent, so we're still looking into it. Hoping green hydrogen from electrolysis will be a possibility, but the question is how much will be available. For reference, green hydrogen is hydrogen created via electrolysis from carbon-free energy sources such as solar, wind, and nuclear. Would need large quantities of hydrogen to fuel a combined cycle plant. Actively studying this, but hard to say definitively for the 2030 timeframe. - v. Any geothermal development? - Watching it and have heard from some companies doing it, but currently seeing that geology in Carolinas does not make it economical, though open to changing assumptions in response to new information. - vi. Learning
curves and cost declines where is that information coming from? What are the SMR costs based on (given some projects have had delayed and overruns) - 1. Dark blue in slide 65 is the EIA number. Light blue is engineering that Duke does where they don't think EIA was aggressive enough. These are all about capital cost declines. - On SMR's believe the question is in response to a project in Utah where there was confusion about two different cost estimates – one was the cost as if the project was built overnight, the other was the actual cost to build. - vii. Are heat pumps considered? - 1. Yes, but not in this area these are generation technologies. - viii. Heard an argument that cost declines would support a later deployment of technologies believe this should be reframed as to whether technologies are economic and least-cost now. - Probably misconstrued what I meant there. For deployments that will be much cheaper within a few years, later deployment could save customers costs, but acknowledge that we should not delay technologies that we need to meet the goals and that are economical now. - 3. Natural Gas Price Forecasting - a. Historically in the IRP, have used projected market gas prices for the first 10 years, followed by 5 years of blending market gas data with fundamental fuel - prices (using biannual data from IHS CERA), followed by a forecast that is based 100% on fundamentals. Fundamental prices have tended to be much higher than market prices, though this hasn't always been the case, it's been variable. - b. For North Carolina IRP, ordered to use no more than 8 years of market prices. - c. Proposed change for Carbon Plan and future IRP's Use market gas data for only the first 5 years, followed by a 3-year period of blending market gas with fundamentals (using an average of EIA, EVA, IHS and Wood Mackenzie), followed by 100% fundamentals; coal and gas would be on the same blending basis. - i. Goal of doing this is to work in a blended time period within the 8 year limit, otherwise a sudden shift from market prices to fundamentals can create odd modeling results that jump from one year to the next. - ii. Proposing to use an average of four different fundamental pricing sources to decrease volatility from one year to another that can result from using a single source. #### d. Q&A - How are you considering cost uncertainty or sensitivity analysis in its considerations of natural gas? Uncovered gas volumes are a risk to ratepayers. - We recognize commodity price volatility has an impact on the plan. Looking at multiple reputable sources on what the long run cost will be – those long run fundamentals are what drive the model selection choices. Will also look at how sensitive the choices are to the fuel price assumptions. - ii. In the forecasting community, the way people deal with uncertainty, they look at a distribution of gas prices in the future, and then one comes up with a composite cost across that distribution. But the way it's being done here doesn't reflect the economic risk of the high end. Less of an issue with renewables, but it is an issue with fossil fuels. - Good question. There are dozens if not hundreds of inputs that go into the model, of which commodity prices are one. To do this out towards 2050 with so many variables, there isn't a good model yet that can do that probabilistically. So, appreciate the comment and understand the point. We do try to look at high and low sensitivities. - iii. What's the Y axis on slide 67? - 1. This is just illustrative of the commodity price. ## **XI. Next Steps** - 1. Slides, the anonymized chat, and recordings of the presentations will be posted on the Carbon Plan webpage at www.duke-energy.com/CarolinasCarbonPlan. - Any additional thoughts and suggestions can be sent by email to DukeCarbonPlan@gpisd.net - 3. The next meeting will take place on Wednesday, February 23rd. GPI will be sending out an email soon with the link to register. - 4. There were several chat comments suggesting a stakeholder workgroup on transmission buildout and interconnection, so stay tuned for more information on that opportunity. - 5. Please be in touch with any thoughts or suggestions on anything related to the Carbon Plan, including on the stakeholder process. ## List of Attendees by Organization | Joe Bearden | 350 Triangle | |-----------------------|--------------------------------| | Karen Bearden | 350 Triangle | | La'Meshia Whittington | Advance Carolina | | Donald Zimmerman | Alder Energy Systems | | | Alliance to Protect Our People | | Cathy Buckley | and the Places We Live | | Kathryn Chelminski | Ameresco | | Scott Conklin | APCO Worldwide | | Rachael Estes | Apex Clean Energy | | David McGowan | Api | | Rob Jennings | Api | | Justin Sykes | API SE Region | | Rob Howard | Appalachian State University | | Sohad Abu-elzait | Appalachian State University | | Josh McClenney | Appalachian Voices | | Rory McIlmoil | Appalachian Voices | | Elizabeth Ratner | Atrium Health | | Michael Roberts | Atrium Health | | Greg Andeck | Audubon North Carolina | | Christina Cress | Bailey & Dixon, LLP | | Kim Campbell | Bailey & Dixon, LLP | | George Baldwin | Baldwin Consulting Group, LLC | | Brad Visokey | Bank of America | | Lisa Shpritz | Bank of America | | Oliver Twitchell | BP | | Michael Wallace | BrightNight Power | | | Brooks, Pierce, McLendon, | |-----------------|---| | Craig Schauer | Humphrey & Leonard, LLP | | | Brooks, Pierce, McLendon, | | Marcus Trathen | Humphrey & Leonard, LLP | | | Brubaker & Associates, Inc./Carolina | | Nick Phillips | Industrial Group for Fair Utility Rates | | Jeremiah LeRoy | Buncombe County | | | Carolina Industrial Group for Fair | | Preston Howard | Utility Rates | | | Carolina Utility Customers | | Kevin Martin | Association, Inc | | | Carolinas Clean Energy Business | | Chris Carmody | Association | | | Carolinas Clean Energy Business | | John Burns | Association | | Kathy Kaufman | Carrboro Climate Action Team | | | Central Electric Power Cooperative, | | Mark Svrcek | Inc. | | | Central Electric Power Cooperative, | | Mason Milligan | Inc. | | Ellen Zuckerman | Ceres | | Robert Kaineg | Charles River Associates | | John Downey | Charlotte Business Journal | | Bradford Muller | Charlotte Pipe and Foundry | | Steve Rundle | Charlotte-Mecklenburg NAACP | | Kevin Lindley | Chatham County | | Bridget Herring | City of Asheville | | Heather Bolick | City of Charlotte | | Leff O and als | 0:tt-0 | |----------------------|---------------------------------| | Jeff Sovich | City of Greensboro | | Michael Frixen | City of Greenville | | Madison Kluge | City of Salisbury | | Brian Morgan | Clean Energy Buyers Association | | Joel Porter | CleanAIRE NC | | Snowil Lopes | Clemson University | | Thomas Suttles | Clemson University | | Anthony Putnam | Clemson University Facilities | | Amelia Covington | Climate Action North Carolina | | Eddy Moore | Coastal Conservation League | | | Conservation Voters of South | | Jalen Brooks-Knepfle | Carolina | | | Conservation Voters of South | | John Brooker | Carolina | | | Conservation Voters of South | | John Tynan | Carolina | | John Gaertner | Consultant | | | Continental Tires the Americas, | | Stavros Polyzoidis | LLC | | Julius Horvath | Core Solar, LLC | | Randall Jenks | Core Solar, LLC | | PJ Klein | Corning Incorporated | | Steve Frank | Corning Incorporated | | Nicole Miller | Cypress Creek Renewables | | Peter Stein | Cypress Creek Renewables | | Tyler Norris | Cypress Creek Renewables | | Zander Bischof | Cypress Creek Renewables | | Scott Stanco | Department of the Navy | | Bernard Givan | Department of the Navy - NAVFAC | | Sarah Cosby | Dominion Energy, Inc. | | Warren ReBarker | Draughon Farms, LLC | | Adam Reichenbach | Duke Energy | | Andrew Clarke Angela Tabor Arnie Richardson Benjamin Passty Bill Currens Bill Norton Blain Atkins Duke Energy Bob Donaldson Bobby Mc Murry Bradley Harris Brant Werts Brian Bak Duke Energy Brian Lusher Bryan Dougherty Bryan Wright Camal Robinson Chris Edge Chris Edge Duke Energy Camal Robinson Duke Energy Chris Hixson Duke Energy Chris Nolan Duke Energy Chris Nolan | Ameya Deoras | Duke energy | |--|--------------------|-------------| | Angela Tabor | | | | Arnie Richardson Benjamin Passty Duke Energy Bill Currens Duke Energy Bill Norton Duke Energy Blain Atkins Duke Energy Bo Somers Duke Energy Bob Donaldson Duke Energy Bobby Mc Murry Duke Energy Bobby Moore Duke Energy Bradley Harris Duke Energy Brant Werts Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Hixson Duke Energy Duke Energy Chris Nolan Duke Energy Duke Energy | | | | Benjamin Passty Bill Currens Duke Energy Bill Norton Duke Energy Blain Atkins Duke Energy Bo Somers Duke Energy Bob Donaldson Duke Energy Bobby Mc Murry Duke Energy Bobby Moore Duke Energy Bradley Harris Duke Energy Brant Werts Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Hixson Duke
Energy Duke Energy Chris Nolan Duke Energy Duke Energy | | | | Bill Currens Bill Norton Duke Energy Blain Atkins Duke Energy Bo Somers Duke Energy Bob Donaldson Duke Energy Bobby Mc Murry Duke Energy Bradley Harris Duke Energy Brant Werts Duke Energy Brett Breitshwerdt Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Hixson Duke Energy Duke Energy Chris Nolan Duke Energy Duke Energy | | | | Bill Norton Blain Atkins Duke Energy Bo Somers Duke Energy Bob Donaldson Duke Energy Bobby Mc Murry Duke Energy Bobby Moore Duke Energy Bradley Harris Duke Energy Brant Werts Duke Energy Brett Breitshwerdt Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Chris Edge Duke Energy Duke Energy Chris Nolan Duke Energy Duke Energy Duke Energy Chris Nolan Duke Energy Duke Energy | | | | Blain Atkins Bo Somers Duke Energy Bob Donaldson Duke Energy Bobby Mc Murry Duke Energy Bobby Moore Duke Energy Bradley Harris Duke Energy Brant Werts Duke Energy Brett Breitshwerdt Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Edge Duke Energy Chris Hixson Duke Energy Chris Nolan Duke Energy Chris Holan Duke Energy | | | | Bo Somers Bob Donaldson Bobby Mc Murry Bobby Moore Bradley Harris Brant Werts Brett Breitshwerdt Brian Bak Brian Lusher Bryan Dougherty Bryan Wright Camal Robinson Catherine Goza Chris Hixson Duke Energy Catherine Goza Duke Energy Duke Energy Duke Energy Duke Energy Chris Hixson Duke Energy Duke Energy Duke Energy Chris Nolan Duke Energy | | | | Bob Donaldson Bobby Mc Murry Bobby Moore Bradley Harris Brant Werts Brett Breitshwerdt Brian Bak Brian Lusher Bryan Dougherty Bryan Wright Camal Robinson Catherine Goza Chris Edge Duke Energy Catherine Goza Duke Energy Chris Hixson Duke Energy Duke Energy Duke Energy Chris Hixson Duke Energy Duke Energy Duke Energy Chris Hixson Duke Energy Duke Energy Chris Hixson Duke Energy | | <u> </u> | | Bobby Mc Murry Bobby Moore Bradley Harris Duke Energy Brant Werts Duke Energy Brett Breitshwerdt Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Hixson Duke Energy Duke Energy Duke Energy Chris Nolan Duke Energy Duke Energy Duke Energy Chris Hixson Duke Energy Duke Energy | | | | Bobby Moore Duke Energy Bradley Harris Duke Energy Brant Werts Duke Energy Brett Breitshwerdt Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Edge Duke Energy Chris Nolan Duke Energy Chris Nolan Duke Energy | | | | Bradley Harris Duke Energy Brant Werts Duke Energy Brett Breitshwerdt Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Edge Duke Energy Chris Hixson Duke Energy Chris Nolan Duke Energy | | | | Brant Werts Brett Breitshwerdt Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Edge Duke Energy Chris Nolan Duke Energy Duke Energy Duke Energy Duke Energy | | | | Brett Breitshwerdt Duke Energy Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Edge Duke Energy Chris Hixson Duke Energy Chris Nolan Duke Energy | | Duke Energy | | Brian Bak Duke Energy Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Edge Duke Energy Chris Hixson Duke Energy Duke Energy Duke Energy Duke Energy Chris Nolan Duke Energy | Brant Werts | Duke Energy | | Brian Lusher Duke Energy Bryan Dougherty Duke Energy Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Edge Duke Energy Chris Hixson Duke Energy Chris Nolan Duke Energy | Brett Breitshwerdt | Duke Energy | | Bryan Dougherty Bryan Wright Camal Robinson Catherine Goza Chris Edge Chris Hixson Chris Nolan Duke Energy Duke Energy Duke Energy Duke Energy Duke Energy Duke Energy | Brian Bak | Duke Energy | | Bryan Wright Duke Energy Camal Robinson Duke Energy Catherine Goza Duke Energy Chris Edge Duke Energy Chris Hixson Duke Energy Chris Nolan Duke Energy | Brian Lusher | Duke Energy | | Camal RobinsonDuke EnergyCatherine GozaDuke EnergyChris EdgeDuke EnergyChris HixsonDuke EnergyChris NolanDuke Energy | Bryan Dougherty | Duke Energy | | Catherine Goza Duke Energy Chris Edge Duke Energy Chris Hixson Duke Energy Chris Nolan Duke Energy | Bryan Wright | Duke Energy | | Catherine GozaDuke EnergyChris EdgeDuke EnergyChris HixsonDuke EnergyChris NolanDuke Energy | Camal Robinson | Duke Energy | | Chris HixsonDuke EnergyChris NolanDuke Energy | Catherine Goza | Duke Energy | | Chris HixsonDuke EnergyChris NolanDuke Energy | Chris Edge | Duke Energy | | | Chris Hixson | Duke Energy | | Christopher Cherne Duke Energy | Chris Nolan | Duke Energy | | Christopher Sharpe Duke Energy | Christopher Sharpe | Duke Energy | | Conitsha Barnes Duke Energy | | | | Dan Donochod Duke Energy | Dan Donochod | | | Dan Sympson Duke Energy | | | | Danny Brothers Duke Energy | | | | David Johnson Duke Energy | | | | Dennis Turner Duke Energy | Dennis Turner | | | Elaine Jordan | Duke Energy | |-----------------------|-------------| | Emilly Felt | Duke Energy | | Emily DeRoberts | Duke Energy | | Evan Shearer | Duke Energy | | Felicia Diakite | Duke Energy | | George Brown | Duke Energy | | Glen Snider | Duke Energy | | Grace Rountree | Duke Energy | | Gray Tompson | Duke Energy | | Hans Jacob | Duke Energy | | Heather Shirley Smith | Duke Energy | | Jack Jirak | Duke Energy | | Jacob Colley | Duke Energy | | James Wurst | Duke Energy | | Jason Handley | Duke Energy | | Jason Martin | Duke Energy | | Jay Oliver | Duke Energy | | Jeffery Cardwell | Duke Energy | | Jeffrey Day | Duke Energy | | Jennifer Canipe | Duke Energy | | Jim Northrup | Duke Energy | | Joe Glass | Duke Energy | | Joe McCallister | Duke Energy | | Jonathan Byrd | Duke Energy | | Jonathan Landy | Duke Energy | | Joseph Jacobs | Duke Energy | | Joshua Paragas | Duke Energy | | Justin Brown | Duke Energy | | Justin LaRoche | Duke Energy | | Keith Pike | Duke Energy | | Kendal Bowman | Duke Energy | | | | | Kendrick Fentress | Duko Energy | |---------------------|-------------| | | Duke Energy | | Kenneth Jennings | Duke Energy | | Kevin McLaughlin | Duke Energy | | Ladawn Toon | Duke Energy | | Lauren Tryonis | Duke Energy | | Lee Mitchell | Duke Energy | | Linda Hannon | Duke Energy | | Lon Huber | Duke Energy | | Mark McIntire | Duke Energy | | Mark Oliver | Duke Energy | | Mark Tabert | Duke Energy | | Matt Kalemba | Duke Energy | | Maura Farver | Duke Energy | | Melanie Shipley | Duke Energy | | Melissa Murphy | Duke Energy | | Meredith Archie | Duke Energy | | Michael PIrro | Duke Energy | | Michael Rib | Duke Energy | | Michele deLyon | Duke Energy | | Mike Callahan | Duke Energy | | Mike Quinto | Duke Energy | | Mike Ruhe | Duke Energy | | Nate Finucane | Duke Energy | | Nathan Gagnon | Duke Energy | | Nicholas Lalley | Duke Energy | | Patrick Louka | Duke Energy | | pedram Mohseni | Duke Energy | | Phillip Stillman | Duke Energy | | Precious Tullis | Duke Energy | | Quinetta Buterbaugh | Duke Energy | | Randall Heath | Duke Energy | | <u></u> | | | David Madage day | Dulas Faranas | |-----------------------|--------------------------------| | Ravi Mujumdar | Duke Energy | | Rebecca Dulin | Duke Energy | | Rick Jiran | Duke Energy | | Ronnie Young | Duke Energy | | Ryan Boyle | Duke Energy | | Ryan McAward | Duke Energy | | Ryan Minto | Duke Energy | | Ryan Mosier | Duke Energy | | Sam Wellborn | Duke Energy | | Sammy Roberts | Duke Energy | | Sarah Adair | Duke Energy | | Sarah Kutcher | Duke Energy | | Stephen De May | Duke Energy | | Steve Immel | Duke Energy | | Susan Snow | Duke Energy | | Terri Edwards | Duke Energy | | Thomas Beatty | Duke Energy | | Tim Duff | Duke Energy | | Timika Shafeek-Horton | Duke Energy | | Tom Davis | Duke Energy | | Tyler Cook | Duke Energy | | Zachary Evans | Duke Energy | | Casey Collins | Duke University | | Jason Elliott | Duke University | | Russell Thompson | Duke University | | Doug Heron | Duke University / DUHS | | Wafa Khalil | Durham Climate Reality Project | | Tobin Freid | Durham County Government | | Brad Slocum | East Point Energy | | Harris Vaughan | Eckel & Vaughan | | Jevonte Blount | Eckel & Vaughan | | Tori Ludwig | Eckel & Vaughan | |-----------------|---------------------------------------| | Seth Studer | Ecoplexus | | Ed Ablard | Ed Ablard Law Firm | | | Electric Cooperatives of South | | Mike Smith | Carolina | | Neil Kern | Electric Power Research Institute | | Tracy Leslie | Electric Power Research Institute | | | Electric Power Research Institute, | | | Energy & Environmental Analysis | | Adam Diamant | Program | | Andrew Fusco | ElectriCities of North Carolina, Inc. | | Drew Elliot | ElectriCities of North Carolina, Inc. | | Kathy Moyer | ElectriCities of North Carolina, Inc. | | Shelby Green | Energy and Policy Institute | | Alex DeGolia | Environmental Defense Fund | | David Kelly | Environmental Defense Fund | | Drew Stilson | Environmental Defense Fund | | Michelle Allen | Environmental Defense Fund | | Tom Cunningham | Equinor Renewables | | Aram Zamgochian | ESS Tech, Inc. | | Dennis Derricks | Facebook | | | Fayetteville Public Works | | Keith Lynch | Commission | | | Fayetteville Public Works | | Morgan Hylton | Commission |
| Ben Snowden | Fox Rothschild | | Gray Styers | Fox Rothschild | | Karen Kemerait | Fox Rothschild | | Taylor Speer | Fox Rothschild | | Holly Garrett | Gaia Herbs | | Amy Wallace | GE Power | | Brian Smith | GE Power | | | | | Brittany Stinson | GE Power | |-----------------------|--------------------------------------| | Edwin Wu | GE Power | | James Fazzone | GE Power | | Justin Seymour | GE Power | | Donna Robichaud | Geenex Solar LLC | | Lesley Williams | Geenex Solar LLC | | Ethan Blumenthal | Good Solar Organization | | Jamey Goldin | Google, LLC | | Alissa Bemis | Great Plains Institute | | Doug Scott | Great Plains Institute | | Trevor Drake | Great Plains Institute | | | Green Built Alliance / Energy Savers | | Brad Rouse | Network | | | Greensboro Solar Power Now | | William McNeil | Coalition | | Ann Thompson | Guidehouse | | Chip Wood | Guidehouse | | Curt Anderson | Guidehouse | | Dan Bradley | Guidehouse | | Danielle Vitoff | Guidehouse | | Jamie Bond | Guidehouse | | Jennifer Ahearn | Guidehouse | | Latisha Younger-Canon | Guidehouse | | Shalom Goffri | Guidehouse | | Tom Batchelor | Haywood EMC | | Krystal Harwick | HDR Inc. | | - | Interfaith Creation Care of the | | Russell Outcalt | Triangle | | Erin Curran | Invenergy | | Kaley Bangston | Invenergy | | Jean Pudlo | JB Pudlo Consulting | | Bryan Thomas | JLL | | | | | Betsy McCorkle | Kairos Government Affairs | |-------------------|-----------------------------------| | Bill Cummings | Kimberly-Clark Corporation | | Nelson Freeman | KTS Strategies LLC | | Brian Pattillo | Lockhart Power Company | | James Seay | Lockhart Power Company | | Kevin Hutchison | Longroad Energy | | Andrea Kells | McGuireWoods LLP | | Kristin Athens | McGuireWoods LLP | | Tess Rogers | McGuireWoods LLP | | Tracy DeMarco | McGuireWoods LLP | | Anne Lazarides | Member of the public | | Caleb Rudow | Member of the public | | Marcia Vetter | Member of the public | | Rosemary Robinson | Member of the public | | | Member of the public - | | Bill Dam | Environmental scientist | | Steven Castracane | Messer | | Brad Ikenberry | Michelin North America | | Daniel Sistrunk | Milliken & Company | | Joseph Sticca | Mitsubishi Power Americas | | Julie Mayfield | MountainTrue | | | National Council of Structural | | Benjamin Smith | Engineers Associations | | Amanda Levin | Natural Resources Defense Council | | Irene Nielson | Natural Resources Defense Council | | John Thigpen | Natural Resources Defense Council | | Luis Martinez | Natural Resources Defense Council | | Samuel Whillans | Natural Resources Defense Council | | Keval Kaur Khalsa | NC WARN | | Sally Robertson | NC WARN | | Bob Hinton | NCUC - Public Staff | | Chris Ayers | NCUC - Public Staff | | David Williamson | NCUC - Public Staff | |-------------------------|---| | Dianna Downey | NCUC - Public Staff | | Dustin Metz | NCUC - Public Staff | | Evan Lawrence | NCUC - Public Staff | | James McLawhorn | NCUC - Public Staff | | Jay Lucas | NCUC - Public Staff | | Jeff Thomas | NCUC - Public Staff | | Jim Singer | NCUC - Public Staff | | Jordan Nader | NCUC - Public Staff | | | NCUC - Public Staff | | Jordan Pappas June Chiu | | | | NCUC - Public Staff NCUC - Public Staff | | Lucy Edmandson | | | Lucy Edmondson | NCUC - Public Staff | | Michael Maness | NCUC - Public Staff | | Munashe Magarira | NCUC - Public Staff | | Nadia Luhr | NCUC - Public Staff | | Phat Tran | NCUC - Public Staff | | Robert Josey | NCUC - Public Staff | | Scott Saillor | NCUC - Public Staff | | Tommy Williamson | NCUC - Public Staff | | William Zeke Creech | NCUC - Public Staff | | Sarah Fraser | New Belgium Brewing | | Naomi Hodges | North Carolina Black Alliance | | | North Carolina Clean Energy | | Christina Kopitopoulou | Technology Center | | Crady O'Prion | North Carolina Conservation | | Grady O'Brien | Network North Carolina Conservation | | Will Scott | Network | | VVIII OCOLL | North Carolina Department of | | Jennifer Mundt | Commerce | | | · · · · · · · · · · · · · · · · · | | | North Carolina Danartment of | |----------------------|--| | Michelle Boswell | North Carolina Department of | | Michelle Boswell | Commerce | | | North Carolina Department of | | Neha Patel | Commerce | | | North Carolina Department of | | Robert Bennett | Environmental Quality | | | North Carolina Department of | | Francisco Benzoni | Justice | | | North Carolina Department of | | Margaret Force | Justice | | | North Carolina Department of | | Teresa Townsend | Justice | | | North Carolina Department of | | Tiffany Lucas | Justice | | Michael Abraczinskas | North Carolina Division of Air Quality | | menaer, wraezmenae | North Carolina Division of Air | | | Quality/North Carolina Department | | Randy Strait | of Environmental Quality | | rtariay etran | North Carolina Electric Membership | | Charles Bayless | Corporation | | Griance Bayless | North Carolina Electric Membership | | Deborah Britt | Corporation | | Beboran Britt | North Carolina Electric Membership | | James Musilek | Corporation | | James Musliek | North Carolina Electric Membership | | John Cook | · | | John Cook | Corporation | | Khalil Bortor | North Carolina Electric Membership | | Khalil Porter | Corporation | | Mishaal Varith | North Carolina Electric Membership | | Michael Youth | Corporation | | B: | North Carolina Electric Membership | | Richard McCall | Corporation | | | North Carolina Electric Membership | | Robert Beadle | Corporation | | | I | |--------------------|-------------------------------------| | T. D. I | North Carolina Electric Membership | | Tim Dodge | Corporation | | DeAndrea Salvador | North Carolina General Assembly | | | North Carolina Interfaith Power and | | Gary Smith | Light | | | North Carolina Interfaith Power and | | Penny Hooper | Light | | Otambana lamadiaa | North Carolina Interfaith Power and | | Stephen Jurovics | Light | | Alfred Ripley | North Carolina Justice Center | | Claire Williamson | North Carolina Justice Center | | | North Carolina League of | | Robin Smith | Conservation Voters | | 5 6 | North Carolina Manufacturers | | Ross Smith | Alliance | | Kathie Dello | North Carolina State University | | | North Carolina Sustainable Energy | | Peter Ledford | Association | | N | North Carolina's Electric | | Nicole Hensley | Cooperatives | | Kevin ODonnell | Nova Energy Consultants, Inc. | | Hayes Framme | Orsted | | Patrick Ballantine | Orsted | | Skylar Drennen | Orsted | | Scott Bragg | PactivEvergreen | | Mark Mirabito | Palladium Energy | | Ryan Ledonne | Palladium Energy | | Randy Doyle | Parkdale Mills | | Katherine Ross | Parker Poe | | Gordon Powell | Person County Commissioner | | Jessica Rowe | Piedmont Environmental Alliance | | Adam Stein | Pine Gate Renewables, LLC | | Steven Levitas | Pine Gate Renewables, LLC | | Jessica Shipley | Regulatory Assistance Project | |----------------------|--------------------------------| | Gennelle Wilson | RMI | | Kirsten Millar | RMI | | Julie Robinson | Robinson Consulting Group | | Julie Robinson | Rutherford Electric Membership | | Tommy Chapman | Corporation | | Alexandra St. Pe | RWE Renewables | | Evan Racine-Johnson | RWE Renewables | | James Sun | RWE Renewables | | Kate Mckeever | RWE Renewables | | Ross Barnhardt | Sands Law, PLLC | | Sandy Sands | Sands Law, PLLC | | Geoff Penland | Santee Cooper | | Will Brown | Santee Cooper | | Matt Hooper | Savion | | Steven Courtney | ScottMadden, Inc. | | Mike Woodard | Senate | | Christopher Clement | Siemens Energy | | Kelly Melton | Siemens Energy | | Cassie Gavin | Sierra Club | | David Rogers | Sierra Club | | Leah Cooper | Sierra Nevada Brewing Co. | | Daisy Chung | Smart Electric Power Alliance | | Jared Leader | Smart Electric Power Alliance | | Sharon Allan | Smart Electric Power Alliance | | Sid Shah | Soltage, LLC | | Stephanie Sienkowski | Soltage, LLC | | Dennis Richter | Solterra Partners, LLC | | | South Carolina Coastal | | Ben Garris | Conservation League | | Chantal Emian | South Carolina Department of | | Chantal Fryer | Commerce | | Connor Parker Consumer Affairs South Carolina Department of Consumer Affairs South Carolina Dept of Consumer Affairs South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Bryan Jacob Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Hamilton Davis Southern Alliance for Clean Energy Hamilton Davis Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Richolas Jimenez Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Southern Renewable Energy Association Dionne Delli-Gatti State of North Carolina | | 1 |
--|-----------------------|------------------------------------| | Eliza Mecaj South Carolina Department of Consumer Affairs South Carolina Department of Consumer Affairs South Carolina Dept of Consumer Affairs South Carolina Dept of Consumer Affairs South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Katharine Kollins Southeastern Wind Coalition Katharine Kollins Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Hamilton Davis Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Southern Renewable Energy Association | | South Carolina Department of | | Eliza Mecaj Joan Williams South Carolina Department of Consumer Affairs South Carolina Dept of Consumer Affairs South Carolina Dept of Consumer Affairs South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Lauren Bowen Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Southern Renewable Energy Association | Connor Parker | | | South Carolina Department of Consumer Affairs South Carolina Dept of Consumer Affairs South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Lauren Bowen Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Southern Renewable Energy Association | | • | | Consumer Affairs South Carolina Dept of Consumer Affairs South Carolina Dept of Consumer Affairs South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Southeast Sustainability Directors Network Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Current Bowen Southern Environmental Law Center Env | Eliza Mecaj | _ | | Roger Hall Roger Hall Affairs South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Southern Environmental Law Center Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center | | | | Roger Hall Affairs South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Southern Environmental Law Center Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Renewable Energy Association | Joan Williams | | | Anthony Sandonato South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Karly Lohan Karly Lohan Southeastern Wind Coalition Katharine Kollins Bryan Jacob Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Alliance for Clean Energy Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Lauren Bowen Southern Environmental Law Center Southern Renewable Energy Association | | <u>.</u> | | Anthony Sandonato Dawn Hipp Staff South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Karly Lohan Karly Lohan Southeastern Wind Coalition Katharine Kollins Bryan Jacob Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Alliance for Clean Energy Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Southern Environmental Law Center Nicholas Jimenez Tirrill Moore Southern Environmental Law Center Southern Environmental Law Center Southern Renewable Energy Association | Roger Hall | | | South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Sayan Jacob Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Southern Environmental Law Center Southern Renewable Energy Simon Mahan Southern Renewable Energy Association | Anathanas Canadanata | | | Robert Lawyer Staff South Carolina Office of Regulatory Staff South Carolina Office of Regulatory Staff South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Bryan Jacob Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Lauren Bowen Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Southern Renewable Energy Association | Anthony Sandonato | | | Robert Lawyer Staff South Carolina Office of Regulatory Staff South Carolina Office of Regulatory Staff South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Karly Lohan Southeastern Wind Coalition Katharine Kollins Bryan Jacob Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern
Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Lauren Bowen Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Renewable Energy Simon Mahan Santa San | Down Hipp | | | Staff South Carolina Office of Regulatory Stacey Washington Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Lauren Bowen Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Southern Renewable Energy Simon Mahan Staff Southeastern Wind Coalition Southeastern Wind Coalition Southern Alliance for Clean Energy Southern Environmental Law Center Renewable Energy Association | Dawn нірр | | | South Carolina Office of Regulatory Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Bryan Jacob Southern Alliance for Clean Energy Forest Bradley Wright Maggie Shober Hamilton Davis David Neal Southern Alliance for Clean Energy Southern Alliance for Clean Energy Southern Alliance for Clean Energy Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Lauren Bowen Nicholas Jimenez Southern Environmental Law Center Renewable Energy Simon Mahan | Robert Lawyer | | | Stacey Washington Staff Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Southeastern Wind Coalition Southeastern Wind Coalition Bryan Jacob Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Southern Environmental Law Center Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Renewable Energy Association | Robert Lawyer | | | Southeast Sustainability Directors Network Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Bryan Jacob Southern Alliance for Clean Energy Forest Bradley Wright Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Lauren Bowen Southern Environmental Law Center Renewable Energy Simon Mahan | Stacey Washington | | | Ann Livingston Jaime Simmons Southeastern Wind Coalition Karly Lohan Southeastern Wind Coalition Katharine Kollins Bryan Jacob Southern Alliance for Clean Energy Forest Bradley Wright Maggie Shober Hamilton Davis David Neal Gudrun Thompson Lauren Bowen Nicholas Jimenez Southern Environmental Law Center Renewable Energy Simon Mahan | Ctaccy Wachington | | | Karly Lohan Katharine Kollins Bryan Jacob Forest Bradley Wright Maggie Shober Hamilton Davis David Neal Gudrun Thompson Lauren Bowen Nicholas Jimenez Tirrill Moore Katharine Kollins Southeastern Wind Coalition Southern Alliance for Clean Energy Southern Alliance for Clean Energy Southern Alliance for Clean Energy Southern Current LLC Southern Environmental Law Center Southern Renewable Energy Simon Mahan Southern Renewable Energy | Ann Livingston | 1 | | Katharine Kollins Bryan Jacob Southern Alliance for Clean Energy Forest Bradley Wright Maggie Shober Hamilton Davis David Neal Gudrun Thompson Lauren Bowen Nicholas Jimenez Tirrill Moore Southern Environmental Law Center Renewable Energy Simon Mahan Southern Renewable Energy Association | Jaime Simmons | Southeastern Wind Coalition | | Bryan Jacob Southern Alliance for Clean Energy Forest Bradley Wright Southern Alliance for Clean Energy Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Southern Environmental Law Center Gudrun Thompson Southern Environmental Law Center Lauren Bowen Southern Environmental Law Center Nicholas Jimenez Southern Environmental Law Center Tirrill Moore Southern Environmental Law Center Southern Environmental Law Center Southern Environmental Law Center Southern Renewable Energy Simon Mahan Association | Karly Lohan | Southeastern Wind Coalition | | Forest Bradley Wright Maggie Shober Southern Alliance for Clean Energy Hamilton Davis Southern Current LLC David Neal Gudrun Thompson Lauren Bowen Nicholas Jimenez Tirrill Moore Southern Environmental Law Center Renewable Energy Simon Mahan | Katharine Kollins | Southeastern Wind Coalition | | Maggie ShoberSouthern Alliance for Clean EnergyHamilton DavisSouthern Current LLCDavid NealSouthern Environmental Law CenterGudrun ThompsonSouthern Environmental Law CenterLauren BowenSouthern Environmental Law CenterNicholas JimenezSouthern Environmental Law CenterTirrill MooreSouthern Environmental Law CenterSouthern Environmental Law CenterSouthern Renewable EnergySimon MahanAssociation | Bryan Jacob | Southern Alliance for Clean Energy | | Hamilton DavisSouthern Current LLCDavid NealSouthern Environmental Law CenterGudrun ThompsonSouthern Environmental Law CenterLauren BowenSouthern Environmental Law CenterNicholas JimenezSouthern Environmental Law CenterTirrill MooreSouthern Environmental Law CenterSouthern Renewable EnergySimon MahanAssociation | Forest Bradley Wright | Southern Alliance for Clean Energy | | David Neal Gudrun Thompson Lauren Bowen Nicholas Jimenez Tirrill Moore Southern Environmental Law Center Southern Renewable Energy Association | Maggie Shober | Southern Alliance for Clean Energy | | Gudrun Thompson Lauren Bowen Nicholas Jimenez Tirrill Moore Southern Environmental Law Center Southern Environmental Law Center Southern Environmental Law Center Southern Environmental Law Center Southern Renewable Energy Association | Hamilton Davis | Southern Current LLC | | Lauren Bowen Nicholas Jimenez Tirrill Moore Southern Environmental Law Center Southern Environmental Law Center Southern Environmental Law Center Southern Renewable Energy Association | David Neal | Southern Environmental Law Center | | Nicholas Jimenez Southern Environmental Law Center Southern Environmental Law Center Southern Environmental Law Center Southern Renewable Energy Association | Gudrun Thompson | Southern Environmental Law Center | | Tirrill Moore Southern Environmental Law Center Southern Renewable Energy Association | Lauren Bowen | Southern Environmental Law Center | | Simon Mahan Southern Renewable Energy Association | Nicholas Jimenez | Southern Environmental Law Center | | Simon Mahan Association | Tirrill Moore | Southern Environmental Law Center | | | | Southern Renewable Energy | | Dionne Delli-Gatti State of North Carolina | Simon Mahan | Association | | | Dionne Delli-Gatti | State of North Carolina | | Brian Herndon | Strata Clean Energy | |--------------------------|------------------------------------| | Marshall Conrad | Strata Clean Energy | | Edward Burgess | Strategen Consulting | | Thad Culley | Sunrun Inc. | | Rachel Wilson | Synapse Energy Economics | | Tyler Fitch | Synapse Energy Economics | | Christopher Fendley | TerraPower | | David Penskar | TerraPower | | Thomas Caggiano | The Nature Conservancy | | Sammy Fretwell | The State Media Co./ McClatchy | | George Santucci | Town of Boone | | John Richardson | Town of Chapel Hill | | Jonas Monast | UNC School of Law | | Michael Coleman | Upstate Forever | | Chip Estes | UTILICOM | | Jackson Freeman | Vestas North Americas | | Lindsey Hallock | Vote Solar | | Bhawramaett Broehm | Wartsila | | Russell Weeks | Wartsila | | Will Lange | WaterFurnance | | *There were an additiona | I 32 participants who called in by | ^{*}There were an additional 32 participants who called in by phone that are not listed here as Zoom Webinar cannot capture the names of dial-in attendees. # Duke Energy Carolinas Carbon Plan Stakeholder Meeting 1 Virtual Meeting – January 25, 2022 *Please note, this meeting is being recorded. Presentations will be posted on the Carolinas Carbon Plan website, and discussion portions will be kept for internal purposes only to ensure accuracy of meeting notes. ### Today's Approach ## Part 1: Overview & Key Considerations The morning session will be focused on introductions, process, level-setting and core objectives of the Carolinas Carbon Plan. ## Part 2: Inputs & Assumptions The afternoon session will provide an opportunity to provide feedback to the technical inputs and assumptions that drive the modeling underlying the Carbon Plan Doug Scott, Vice President, Electricity & Efficiency Trevor Drake, Senior Program Manager Alissa Bemis, Meeting & Administrative Coordinator #### **Related GPI Work** - Integrated Resource Planning - Power Plant Host Community Impacts - Time-Varying Rate Designs - Electric Vehicle Investments and Programs - Distribution System Planning - Load Flexibility and Demand Response Programs - Utility Performance Metrics #### **Duke Welcome** **Stephen De May** State President, North Carolina Mike Callahan State President, South Carolina #### Stakeholder Process Objectives 1. Ensure the Carolinas Carbon Plan is informed by input from a wide range of stakeholders. 2. Enable a transparent conversation about how to plan an energy transition that prioritizes affordability and reliability for NC and SC customers. 3. Build on areas of agreement, clarify areas of disagreement, and seek opportunities for collaboration in advance of filing the Carolinas Carbon Plan. #### **Stakeholder Process Timeline** Stakeholder Engagement Proposed Plan Development Finalized Proposed Plan Supplemental Engagement Carolinas Carbon Plan January – March April - Mid-May Mid-May - December ### **Meeting
Ground Rules** - Respect each other: Help us to collectively uphold respect for each other's experiences and opinions, even in difficult conversations. We need everyone's wisdom to achieve better understanding and develop robust solutions. - <u>Focus on values and outcomes</u>: Today's discussion is about what stakeholders value in the energy future, and how the Carolinas Carbon Plan can align with those values. Pending legal issues are outside the scope of this conversation. - Chatham House Rule: Empower others to voice their perspective by respecting the "Chatham House Rule;" you are welcome to share information discussed, but not a participant's identity or affiliation (including unapproved recording of this session). ### **Meeting Ground Rules** - Respect the time: Our time together is limited and valuable, and we have a large group, so please be mindful of the time and of others' opportunity to participate. - <u>Use the chat</u>: Please submit your comments and questions in the chat. GPI staff will monitor the chat to pull out questions for Q&A portions. Please be respectful and focus on issues, not people. - Raise your hand: During dedicated Q&A portions of the meeting, use the "Raise Hand" feature to indicate you would like to voice a question or comment. ### **Meeting Dates** - 1. Tuesday, January 25th - 2. Wednesday, February 23rd - 3. Tuesday, March 22nd Future meeting agendas will be based on feedback received today ## **Additional Participation** Meeting materials/recordings will be uploaded to the website: www.duke-energy.com/CarolinasCarbonPlan Information/feedback can be sent to: \searrow DukeCarbonPlan@gpisd.net Meeting recordings (Q&A portions of meetings will be removed to adhere to the non-attribution rule) and meeting summaries will be uploaded to the website for participants to access. ### Today's Agenda **Part 1: Overview and Key Considerations** **Welcome and Introductions** 9:00am: Stakeholder Engagement Process 9:15am: and Objectives **Introduction to Resource Planning and Decarbonization in the Carolinas** 9:45am: 10:15am: **Road to 70% Emissions Reduction** and Net-Zero Future 10:45am: **BREAK** 11:00am **Discussion** 12:00pm **LUNCH BREAK** **Part 2: Modeling Inputs and Assumptions** **Introduction to Modeling** 1:00pm **Economic Coal Retirements Modeling** 1:30pm Methodology **Load Forecast: Key Drivers** 2:00pm 2:45pm BREAK **Other Key Modeling Assumptions:** 3:00pm Solar Interconnection Forecast Technology Forecasts Natural Gas Price Forecast **Next Steps** 3:45pm 4:00pm **Adjourn** ## Introduction to Resource Planning and Decarbonization in the Carolinas Glen Snider, Managing Director, Carolinas Integrated Resource Planning ## Guiding Principles for Decarbonization: Sustainability, Affordability, Reliability #### **Sustainability** - Carbon reduction targets - 70% reduction 2030 - Net zero by 2050 - Continually reducing environmental impact to ensure - Cleaner air - Cleaner water - Cleaner land #### **Affordability** - Capital, land, operations and maintenance (O&M), and fuel costs vary by resource type - Cumulative costs over time represented as present value of costs - Evaluation of forecasted annual bill impacts shows costs & benefits at snapshots in time #### Reliability - Serve customer demand that varies year-to-year, month-to-month, hourto-hour, and minute-to-minute - Maintain adequate long-term reserves to meet customer needs during peak demand periods - Maintain adequate system flexibility to respond to changing real-time operating conditions #### Reliability Requires Responding to Variability Variable generation compounds challenges of variable load, increasing importance of resources able to rapidly increase or decrease output to balance supply and demand in real time #### **Elements of Decarbonization** #### **Executing a Plan Within a Plan** #### 70% CO₂ Reduction #### Carbon Neutrality - Available Technologies - Near-term Execution - Supporting Actions to **Enable Implementation** - Deployment of New Resource Types - Advanced Nuclear - Offshore Wind - **Emerging Technologies** - Preparation for Future Action - Research & Development - **Technology Pilots** - Signposts Indicating Pace of Advancement ### Periodic Carbon Plan Updates Will Incorporate New Information Uncertainty around the pace of technological advancement, resource costs, and plan implementation risks will decrease as target dates approach Net-Zero Carbon Uncertainty #### Road to 70% Emissions Reduction and Net-Zero Future Mark McIntire, Director, Government and Environmental AffairsMike Quinto, Integrated Resource Planning, Lead Engineer #### Requirements for CO₂ Emissions Reduction - √70% Reduction in Emissions - ✓ Of Carbon Dioxide (CO₂) - ✓ Emitted in the State (NC) - ✓ From electric generating facilities owned or operated by (or on behalf of) electric public utilities - ✓ From 2005 - ✓ Carbon Neutrality by 2050 #### **CO₂ Emissions Data Considerations** #### **EPA eGRID** Environmental Protection Agency (EPA) Emissions and Generation Resource Integrated Database (eGRID) "The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. The preeminent source of emissions data for the electric power sector, eGRID is based on available plant-specific data for all U.S. electricity generating plants that provide power to the electric grid and report data to the U.S. government" – eGRID Technical Guide - Used for environmental disclosures, emission inventories, and RPS and RECs Tracking - Used by Federal Government, state and local governments, the EPA, National Labs, ISOs, non-governmental organizations, academia, and companies #### eGRID Emissions Data Sources - eGRID uses EPA's Clean Air Market Division (CAMD) Power Sector **Emissions Data** - Data reported to EPA by electric generating units to comply with the regulations in 40 CFR Part 75 and 40 CFR Part 63 - Emissions data primarily uses Emissions Tracking Systems (ETS)/Continuous Emissions Monitoring Systems (CEMS) - Actual measurements of CO₂ in stack emissions - Where CEMS data is not available, eGRID uses EIA reported fuel data (EIA-923) to estimate emissions - Estimates emissions based on fuel consumed and standard emissions based on fuel type ## **CO₂ Emissions included in Baseline and Reduction Goals** Owned Operated by Operated on behalf of #### CO₂ Emissions included in Baseline and Future Actual **Emissions** Owned Stack emissions associated with the ownership share of electric generation facilities located in North Carolina owned by DEC/DEP Operated by Stack emissions associated with electric generating facilities located in North Carolina operated by DEC/DEP Operated on behalf of Stack emissions associated with electric generating facilities located in North Carolina not owned or operated by DEC/DEP, but contracted to sell electrical output to DEC/DEP #### **Carolinas Combined Fleet Transition Progress** The combined DEC/DEP fleet is a national leader in low carbon intensity energy, with a current rate 37% lower than the industry average of 957 lbs. CO₂/MWh¹ 1Source: MJ Bradley, "Benchmarking Air Emissions of the 100 Largest Electric Power Producers in the United States" – July 2020, p. 30 Note: 2021 and 2035 energy mix and carbon intensity projections are based on the 2020 IRP Base w/ Carbon Policy #### CO₂ Emissions Baseline, Progress, and 70% Reduction **Target** #### **Decarbonization Replacement Resources** Energy Storage – Battery Energy Storage – Pumped Hydro Advanced Nuclear Offshore Wind **Onshore Wind** Hydrogen-Capable CC Solar **Demand-Side Resources** #### The NC/SC System Must be Built Preserving Reliability ## Break Please return at 11:05AM. # **Clarifying Questions** What information would help you better understand the content presented this morning? ## Discussion: What are your criteria for a successful carbon plan? ## **Lunch Break** Please return at 1:00PM. ## **Introduction to Modeling** Bobby McMurry, Director, Production Cost Modeling & Analytics ### Models, Inputs and Assumptions #### In-depth Modeling Simulates the Power System Operations Over Time - Capacity expansion modeling optimizes the set of resources between existing and new generation sources over long timeframe - Expansion tools consider the fit of resource to the type of demand: Is it needed every hour? Is it needed occasionally over the year? Is it only needed as load goes above a certain level? - Production cost modeling optimizes the use of resources in hourly, seasonal, and annual complexities of actual power systems #### **Models** - EnCompass Power Planning Software - New Capacity Expansion, Production Cost and Regional Power Flow Model - Integration 2020 and 2021 - Advantages - Mixed Integer Linear Programing model all constraints at the same time - Unlimited Ancillaries - Emission Caps - Specific Renewable Requirement - Reserve margin monthly - Advanced storage logic - Dual Fuel Optimization - Economic Retirement - Reliability - Regulating & Balancing Reserves (Ancillaries) Provides reserves needed to account for day ahead forecast changes and inter-hour volatility - SERVM Reliability check to assure portfolios will not exceed 1 loss of load event per 10-year period - SERVM = Strategic Energy & Risk Valuation Model #### Inputs New Generation Capital Cost, life, O&M, eff, Constraints **ENCOMPASS POWER PLANNING SOFTWARE** **Fuel Cost** and Supply (Coal, Gas, Oil) Existing Generation O&M, eff, Constraints #### Reliability & Affordability Require Detailed Modeling impact ## Coal Retirements Modeling Methodology Mike Quinto, Integrated Resource Planning, Lead Engineer ## Coal in the Carolinas (as of 2020 IRP) - Coal assets in the DEC and DEP fleet have provided reliable capacity and energy to customers for decades - Remaining coal assets continue to provide year-round dispatchability that is especially critical
during high load winter conditions - As the industry landscape changes and market forces drive down costs of replacement resources, it is important to develop a transition plan that recognizes where replacement resources become more economic and carry less risk for customers The combined DEC/DEP fleet is a national leader in low carbon intensity energy, with a current rate 37% lower than the industry average of 957 lbs. CO₂/MWh¹ ## Coal Retirement Analysis Background - Previous IRPs utilized the retirement dates of coal units consistent with DEC/DEP's most recently approved depreciation study - Economic coal retirement analysis was performed as a part of the 2020 IRPs - Coal retirement analysis methodology was a topic in the NCUC's Second Technical Conference in the 2020 IRP - Analysis in the 2020 IRPs and the methodologies presented in the Second Technical Conference lay the foundation to refine retirement analysis in support of carbon reduction targets in the new legislation - Coal retirement analysis will be refined and incorporated into Carbon Plan ## **Retirement Analysis** #### **Existing Capacity Costs:** - Incremental Maintenance CapEx - Ongoing Fixed O&M - Environmental Compliance CapEx - System Production Cost Value #### **Replacement Capacity Costs:** - New Generation CapEx - New Fixed O&M - Retiring & New Generation Transmission CapEx - System Production Cost Value When a unit is retired and what it is replaced can change the inputs and balance of this equation #### **DEC/DEP Coal Fleet Statistics** | Unit | Fuel
Capabilities | Maximum
Natural Gas
Co-firing
Capability | Unit
Capacity
(Winter) | Unit
Capacity
(Summer) | In-Service
Date | 2020 IRP Economic
Coal Retirement
Analysis
Retirement Date
(YE) | Current Depreciation Study "Probable Retirement Year" (YE) | |----------------|----------------------|---|------------------------------|------------------------------|--------------------|---|--| | Allen 1 | Coal | | 167 | 162 | 1957 | 2023 | 2024 | | Allen 5 | Coal | | 259 | 259 | 1961 | 2023 | 2026 | | Cliffside 5 | Coal/Gas | 40% | 546 | 544 | 1972 | 2025 | 2032 | | Roxboro 3 | Coal | | 698 | 694 | 1973 | 2027 | 2033 | | Roxboro 4 | Coal | | 711 | 698 | 1980 | 2027 | 2033 | | Roxboro 1 | Coal | | 380 | 379 | 1966 | 2028 | 2028 | | Roxboro 2 | Coal | | 673 | 668 | 1968 | 2028 | 2028 | | Mayo 1 | Coal | | 713 | 704 | 1983 | 2028 | 2035 | | Marshall 1 | Coal/Gas | 40% | 380 | 370 | 1965 | 2034 | 2034 | | Marshall 2 | Coal/Gas | 40% | 380 | 370 | 1966 | 2034 | 2034 | | Marshall 3 | Coal/Gas | 50% | 658 | 658 | 1969 | 2034 | 2034 | | Marshall 4 | Coal/Gas | 50% | 660 | 660 | 1970 | 2034 | 2034 | | Belews Creek 1 | Coal/Gas | 50% | 1,110 | 1,110 | 1975 | 2035+ | 2037 | | Belews Creek 2 | Coal/Gas | 50% | 1,110 | 1,110 | 1975 | 2035+ | 2037 | | Cliffside 6 | Coal/Gas | 100% | 849 | 844 | 2012 | 2035+ | 2048 | ### Stakeholder Feedback for Coal Retirement Analysis - General Comments on Coal Retirement Analysis - Magnitude and complexity - **Modeling limitations** - **Transparency** in results - Straight-forward, **standard methodology** - Remove **objectivity** from analysis - Key Considerations for Coal Retirement Analysis - **Retirements** should be **considered simultaneously**, timing and order determined by model endogenously - Replacement resources should include the option of multiple resource to fill resource gap - Retirements should be co-optimized with replacement resources - Retirements determined by **net exchange** in investment, maintenance, and operations **cost of the system** - Impacts to the transmission system - Recognize investment decreases as generating units approach retirement - Need for retirement dependency and capturing shifting costs - Sunk costs should be excluded, only avoidable costs should be considered ### Carbon Plan Coal Retirement Analysis Approach - Endogenous economic selection of coal retirement in Encompass's capacity expansion model - Leverage dynamic cost modeling tool - Model determination of order and timing of retirements - Co-optimization of retirements and replacement resources - Captures net cost differences in investment, maintenance, and operations cost of system - Still evaluating capabilities of model to handle complexity of analysis - Option to also evaluate coal retirements in sequential process in detailed production cost model - Retirements are dependent on replacement resources and may be shifted slightly in execution to support orderly transition of the fleet or to maintain the reliability of the system #### **Load Forecast Drivers** Brian Bak, Manager, DSM Analytics Tim Duff, General Manager, Retail Customer and Regulatory Strategy Matt Kalemba, Director, Distributed Energy Technologies Planning & Forecasting ## **Energy Efficiency (EE) Forecasting** #### **Market Potential Study (MPS)** - Performed by third party expert consulting firms - Used to inform our EE portfolios as well as IRP EE forecasts - Provide a comprehensive assessment of EE/DSM potential using the best data available at the time to support the study with results specific to the service territory and customer base - Include all currently known technologies, estimated costs, and energy and demand reduction impacts for these EE and DSM measures #### **EE Potential Level Estimates** - Technical Maximum savings possible, regardless of cost. <u>Assumes 100%</u> customer adoption - Economic All cost-effective measures, again with <u>100% customer adoption</u> - Achievable Potential of cost-effective measures based on <u>realistic customer</u> <u>adoption assumptions</u>, unlimited program budget and rate rider impact. - Program Potential of cost-effective measures based on <u>realistic customer</u> adoption assumptions and reasonable program budgets and rate rider impacts | Not
Technically
Feasible | Technical Potential | | | | | |--------------------------------|---------------------------|---|-------------------------------------|-------------------|--| | Not
Technically
Feasible | Not
Cost-
Effective | Economic Potential | | | | | Not
Technically
Feasible | Not
Cost-
Effective | Market
Barriers Achievable Potential | | | | | Not
Technically
Feasible | Not
Cost-
Effective | Market
Barriers | Budget &
Planning
Constraints | Program Potential | | #### Forecast - Base Case #### * Roll-off: - Energy saving impacts no longer represented in our EE forecast as measures reach "end of life" - · Ongoing savings are accounted for in the load forecast. #### Forecast – 1% of Available Retail Load #### * Roll-off: - Energy saving impacts no longer represented in our EE forecast as measures reach "end of life" - · Ongoing savings are accounted for in the load forecast. #### Moving Beyond the Carolinas' Base EE/DSM Forecast | Program Potential Budget/ Planning Constraints | Market
Barriers | Not Cost Effective | Not Technically Feasible | Program additions and modifications to optimize existing program portfolio impacts | |---|--------------------|--------------------|--------------------------|---| | Achievable Potential* | Market
Barriers | Not Cost Effective | Not Technically Feasible | Structural modifications
and mechanisms that
remove market barriers to
program participation | | Economic Potential | | Not Cost Effective | Not Technically Feasible | Modifications that will enhance the cost effectiveness of new programs and enable program modifications | | Technical Potential | | | Not Technically Feasible | Modifications that will expand the number of potential measures and offers reducing consumption from the grid | #### Potential Enablers for Delivering More EE/DSM in the Carolinas #### Structural modifications and mechanisms that remove market barriers to program participation | On-Tariff Financing | Establishing an on-tariff financing program and the necessary recovery mechanism consistent with HB951 to reduce upfront capital costs and credit barriers to undertaking energy efficiency | |------------------------|---| | Marketing enhancements | AMI and other customer data allows better target marketing of programs to customer with high energy savings potential from specific measures | #### Modifications enhancing the cost effectiveness of new programs and enabling program changes | | | A financial value recognizing the value of avoided carbon emissions from energy efficiency programs in cost effectiveness evaluation (UCT). | |--|---|---| | | As Found Energy Savings Recognition | Currently energy savings only recognize savings versus a device's efficiency standard despite the fact true carbon reduction is the energy reduction versus the actual device replace | | | Recognition of localized customer programs values | Identify overloaded circuits/substations and target localized customer programs to offset specific required high T&D spend | #### Modifications expanding the potential measures and offers reducing consumption from the grid | Utility Codes and Standards Program | Currently advancement of building codes and appliance standards reduces potential savings. Creating opportunity for attribution associated
with code advancement and compliance | | | |---|--|--|--| | Customer owned assets that reduce grid consumption | Opportunity to incentivize customers to adopt assets like rooftop solar that reduce energy consumption and carbon emissions from the utility grid.not currently shown as potential | | | | Development of energy efficiency programs for new electrification loads | Currently electrification adds load to the forecast, but little to no energy efficiency opportunities associated with load that actually reduces non-utility carbon emissions | | | | Modifications to Non-Residential Customer Opt Out | Currently energy and carbon savings associated with efficiency potential for industrial and customers using over 1,000,000 KWH not able to be achieved through utility programs | | | | Expand EE Programs to wholesale customers | Opportunity to expand potential EE savings and carbon savings to include potential from customers that take generation from the Duke Carolinas' system. | | | ## Carolinas Net Metered (NEM) Solar Forecast #### **NEM Projections** - Base Case projections use currently approved tariffs in North Carolina and South Carolina - Other suggested NEM Projections? - Aggressive price declines - 30% ITC - Other options? | Jurisdiction | Base NEM as % of
Total System Energy | |-----------------------|---| | 2023 | | | Duke Energy Carolinas | 0.5% | | Duke Energy Progress | 0.6% | | 2025 | | | Duke Energy Carolinas | 0.6% | | Duke Energy Progress | 0.7% | | 2030 | | | Duke Energy Carolinas | 0.9% | | Duke Energy Progress | 1.0% | #### **Electric Vehicle Adoption Assumptions for the Carolinas** #### **Base EV Projections** - Base projections based on mid-2021 data shows continued steady adoption of EVs across the Carolinas - Includes projections for light duty (LD), medium duty (MD), and heavy duty (HD) EV adoption #### **Alternative Projections** - Updated Base Scenario accounting for increased commitments from EV manufacturers and accelerated adoption in 2021 - High Case: Achieve President Biden's goal of PEVs making up 40% - 50% new vehicle sales by 2030 - Other suggested forecasts? Plug-in Electric Vehicles (PEV) Percent of New Vehicle Sales in the Carolinas | Jurisdiction | Base EV Energy - % of Total Energy | High EV Energy - % of Total Energy | |-----------------------|------------------------------------|------------------------------------| | 2023 | | | | Duke Energy Carolinas | 0.1% | 0.1% | | Duke Energy Progress | 0.1% | 0.1% | | 2025 | | | | Duke Energy Carolinas | 0.2% | 0.4% | | Duke Energy Progress | 0.3% | 0.5% | | 2030 | | | | Duke Energy Carolinas | 1.4% | 3.2% | | Duke Energy Progress | 1.6% | 3.9% | | | | | ## Break Please return at 3:05PM. #### **Solar Interconnection Forecast** Matt Kalemba, Director, Distributed Energy Technologies Planning & Forecasting ## **Annual Solar Interconnection Capability - History** - Average about 510 MW/year of solar interconnections since 2015 - Average approximately 9 transmission interconnections annually Solar Interconnection History (DEC + DEP) <u>1</u> 으 # **Annual Solar Interconnection Capability – Time to Interconnect Trends** # **Annual Solar Interconnection Capability – Model Sensitivities** - Land availability, supply chain, increasing transmission reliability and resiliency upgrades, and other resource additions / retirements are headwinds to increasing annual solar interconnections - Shift from smaller, distribution tied solar to larger transmission projects may increase efficiency - No regrets, proactive strategic transmission investments would enable shorter interconnection timelines #### Range of Interconnection Capability Sensitivities (Annual Nameplate MW Interconnections) | | 2026 | 2027 | 2028 | 2029 | 2030 | Potential
Connected
Solar by 2030 | |------------------------------------|-----------|------|------------|------|------|---| | Transmission Constrained | up to 500 | 500 | 400 | 400 | 400 | ~9,400 | | Progressive | up to 750 | 750 | 750 | 750 | 750 | ~11,000 | | Enhanced
Transmission
Policy | | То І | Be Determi | ned | | TBD | - Transmission Constrained Decreasing land availability in unconstrained transmission areas increasingly restricts growth opportunities - Progressive Land availability less constraining than expected, cluster study process leads to more efficient interconnections as upgrade costs are shared among more participants, and / or shift to larger solar facilities leads to steady solar interconnections at historically high levels - Enhanced Transmission Policy Proactive strategic transmission investments lead to more efficient solar interconnections and increased possibility of larger solar projects ## **Technology Forecast** Adam Reichenbach, Generation Technology, Lead Engineer ## **Technology Information** | Technology ¹ | Role | Dispatchability | Annual
Capacity
Factor | |-----------------------------------|-----------------|-----------------|------------------------------| | Solar PV with Tracking | Variable | Partial | 25-30% | | Offshore Wind | Variable | Partial | 40-45% | | Onshore Wind | Variable | Partial | 20-30% | | Battery Storage | Storage/Peaking | Full | 15-25% | | Pumped Hydro Storage ² | Intermediate | Full | 25-35% | | Advanced Nuclear | Baseload | Partial/Full | 60-95% | | Combined Cycle ³ | Baseload | Full | 40-80% | | Combustion Turbine ³ | Peaking | Full | < 25% | - This table represents existing technologies or near-term emerging technologies that we believe will be available within the planning horizon. - **Duke's Emerging Technology** Assessment Team (ETAT) is active looking at other potential energy solutions - Note 1: Sources of data for Duke modeling are Burns & McDonnell, Guidehouse, and EPRI. - Note 2: Pumped Hydro Storage has both pumping and generating capabilities. - Note 3: Hydrogen is under consideration as an emergent fuel source. ## **Technology Learning Curves** Expected Cost Reductions through 2030 by Technology (Real \$) **Bobby McMurry**, Director, Production Cost Modeling & Analytics ## Natural Gas Forecasting Methodology - Historically - Use of 10 years of market gas with 5 years blend to 100% fundamentals - Fundamentals Provided by IHS biannually - Avoided Cost (NC) Use of 8 years Market and 100% fundamentals year 9. - Proposed Change of Methodology - Use of 5 years of market gas w/ 3 year blend to fundamentals - Coal and gas on the same blending basis - Fundamentals Use an average of EIA, EVA, IHS and Wood MacKenzie. - Decrease volatility in fundamental fuel price from one year to another. - Information/feedback can be sent to <u>DukeCarbonPlan@gpisd.net</u> - The next meeting will take place on Wednesday, February 23rd. GPI will be sending out an email later this week with the link to register. Meeting materials/recordings will be uploaded to the website: www.duke-energy.com/CarolinasCarbonPlan ## Carolinas Carbon Plan Developing the path forward for a cleaner energy future. Our climate strategy is our business strategy. And central to this business strategy is delivering increasingly clean energy while maintaining reliability and affordability for the communities we serve. In the Carolinas, our target is 70% carbon reduction by 2030 and net-zero carbon emissions by 2050. Our strategy to achieve these targets will be set forth in the Carolinas Carbon Plan. **Stakeholder input** will be an important contribution that shapes our initial proposal to state regulators. How the Carolinas Carbon Plan will be developed # THANK YOU